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Abstract 
This document will examine the accuracy of the land-surface temperature mapping and averaging 
techniques employed by Berkeley Earth, NASA GISS, and the Hadley Centre / Climatic Research Unit 
groups.  The ability of algorithms to estimate the global properties of weather fields from sparse data is 
a fundamental limitation on the achievable accuracy of climate reconstructions.  Here, these algorithms 
are tested by creating simulated weather station data from the temperature field of a global climate 
model (GCM) and then measuring the effectiveness of each method at reproducing the properties of the 
underlying GCM field.  We examine both the ability to estimate the global land average and the typical 
local error in the mapped field.  In nearly all cases, the Berkeley Earth averaging methodology is shown 
to have greater accuracy at reproducing both the global and local details of the temperature field.   

Introduction 
There are four major efforts to synthesize the Earth’s disparate temperature observations into a 
coherent picture of our planet’s climate history.  These efforts are led respectively by NOAA’s National 
Climate Data Center (NOAA NCDC), NASA’s Goddard Institute for Space Studies (NASA GISS), a 
collaboration between the University of East Anglia’s Climatic Research Unit and the UK Met Office’s 
Hadley Centre (CRU1

The current discussion will focus exclusively on the effect of the different averaging and interpolation 
techniques employed.  To do this we will test the accuracy of each averaging technique using synthetic 
“error-free” data derived from the temperature field of a global climate model.  This approach allows us 
to create simulated station data that is free from the various types of errors and biases that will occur in 
the real world.   By limiting the present discussion to “error-free” data, we can examine the efficacy of 
the different averaging techniques separate from the consideration of quality control and 

), and the Berkeley Earth Surface Temperature group.  Each group uses different 
averaging techniques, quality control procedures, homogenization techniques, and datasets.   

                                                            
1 Here we choose to use the acronym CRU to emphasize that we are looking at the land-based data product 
officially known as CRUTEM4.  Originally the CRUTEM data products were created by the Climatic Research Unit 
alone, but for more than a decade these data products have been published in collaboration with the Hadley 
Centre.  A combined data set of land and ocean temperatures, known as HADCRUT, is also produced by this 
collaboration.  The acronym “HadCRU” is frequently used to describe this collaboration, especially in the context of 
the combined land and ocean data product.  However, since the present discussion considers only the land 
component, we will use the acronym CRU to emphasize that the analysis is referring to the CRUTEM4 methods.   



homogenization issues.  The actual comparison is made by using our implementations of the GISS and 
CRU averaging techniques as understood from their papers (Hansen et al. 2010, Jones et al. 2012).  We 
do not currently have a working implementation of the NOAA NCDC method, and hence it will not be 
included in the present comparison.  With their assistance, we may add an analysis of the NOAA method 
at a future time. 

Simulated Temperature Records 
In the present analysis the CCSM4 climate model was used.2

We began the process of creating synthetic data by using the Global Historical Climatology Network 
monthly dataset (GHCN-M) as a template

  It was chosen because it had the highest 
spatial resolution for surface air temperature fields (192 latitude steps by 288 longitude steps) among 
the models that had archived data for the “Past1000” experiment in the Climate Model Intercomparison 
Project (CMIP5) as of the time the present analysis was started.  For the Past1000 experiment, CCSM4 
simulated the years 850 to 2006 allowing us to draw on more than 1000 years of climate model output 
from which simulated station data could be generated.  We note that higher resolution climate models 
do exist, but they are rarely run for the hundreds of years necessary to simulate the three hundred year 
history of weather observation. 

3

Though the Berkeley Average framework can make use of all 7280 time series in the GHCN-M collection, 
the NASA GISS and CRU methods each have different completeness and normalization requirements for 
their data, and as a result, not all data is usable by each method.

.  This well-established dataset is the foundation of the 
climate analysis conducted by NOAA and GISS and so is a logical starting point for the present work.  The 
dataset includes 7280 weather stations and will provide a set of times and locations at which the climate 
model field can be sampled in order to produce synthetic data with a realistic spatial and temporal 
structure.   

4  In the GHCN-M network we find 5719 
stations where sufficient data exists to compute the baseline climatology required by CRU, and 6278 
stations which meet GISS baseline requirements.  Collectively, there are 5457 time series that are 
acceptable to all three methods.  In order to isolate the effects of averaging performance, and avoid 
biases created by the different selection procedures, we have limited our study to these 5457 records 
that are acceptable to all three methodologies.5

                                                            
2 CCSM4: 

   

http://www.cesm.ucar.edu/models/ccsm4.0/ 
3 GHCN-M version 3: http://www.ncdc.noaa.gov/ghcnm/v3.php 
4 There is actually some ambiguity in the published account of baseline selection procedures.  For example, in 
Jones et al. 2012, the CRUTEM4 baseline procedure is described in part as “[m]onthly averages for 1961–1990 
were calculated from the enhanced station data set, accepting an average if at least 14 years of data are available.”  
However, it is unclear whether “14 years” means (a) any 168 months during the 1961-1990 interval, (b) at least 14 
complete calendar years during this interval, (c) at least 14 calendar years each consisting of at least 9 months (i.e. 
the definition of “complete year” used elsewhere in the same paper), or some other condition.  We believe such 
nuances are ultimately of no consequence. 
5 In their ordinary practice, CRU supplements their baseline estimates with information from World Meteorological 
Organization (WMO) climatologies and other sources.  As such, they would be likely to use more than the 5457 

http://www.cesm.ucar.edu/models/ccsm4.0/�
http://www.ncdc.noaa.gov/ghcnm/v3.php�


The locations of these 5457 stations are shown in Figure 1.  The accompanying Figure 2 shows the 
number of stations active over time.  Like the GHCN-M network as a whole, the peak of station activity is 
in the 1970s followed by a significant decline in station counts as one approaches the present. 

 

Figure 1: Locations of all GHCN-M stations (5457) that have sufficiently complete records to meet the baseline requirements 
of all three methodologies considered by this study.  The sampling history of these weather stations is used to determine the 
times and locations at which the synthetic data in this study is constructed. 

                                                                                                                                                                                                
GHCN-M records with complete reference intervals; however, for simplicity we have chosen to avoid considering 
such secondary sources, and limit our study to time series with sufficiently complete reference intervals that the 
baseline may be determined directly. 



 

Figure 2: The number of observations vs. time for the 5457 GHCN-M stations considered in this study.   

Using the locations and observation histories of these 5457 GHCN-M stations, it was possible to sample 
from the CCSM4 climate model’s air surface temperature field in order to create simulated station 
histories.  The earliest observation in our dataset occurred in 1701, meaning approximately 300 years of 
model output are needed to generate a complete set of simulated observations.  Rather than perform 
this sampling only once, we created 50 sets of simulated data by using randomly chosen time offsets 
within the 1150 year history of the CCSM4 model run.  For example, if an offset of 300 years were 
chosen, then model year 1600 would be treated as if it were the observation year 1900.  This allows us 
to create 50 different sets of simulated weather from which to attempt reconstruction.  Obviously since 
the model run is only 1150 years long, these different simulations often overlap to an extent; however, 
we do not believe that the overlaps will impact our conclusions.  Only whole numbers of years were 
chosen as offsets in order to preserve any seasonal behavior.   

In order to draw conclusions about the effectiveness of the different averaging techniques, we will apply 
Berkeley Earth, CRU, and GISS style averaging to each of these simulated data sets and compare the 
resulting global averages and mapped fields to the properties of the original GCM data set.  As the 
simulated data is intrinsically free from any noise or bias, we have omitted any parts of the respective 
algorithms associated with quality control or homogenization.  In addition, the averaging techniques 
generally require data that has had its seasonality removed, generally by subtracting an average 
seasonal cycle from each time series.  To further reduce differences, we used the true seasonality in the 
GCM field as the basis for removing seasonality from each simulated time series so that slight 
differences in the handling of seasonality in the three algorithms would not affect our conclusions. 



Because CRU has the poorest spatial resolution of the methods considered (5°x5° latitude by longitude), 
analysis of the mapped fields will be made after downscaling the other results to this same resolution. 

Land Field Completeness 
To begin, we will look at the completeness of the generated fields.  Specifically, we examine what 
fraction of the Earth’s land surface is estimated by each method as a function of time.  This is shown in 
Figure 3.  At essentially all times, Berkeley Earth estimates temperature anomalies over a larger fraction 
of Earth’s land area than the NASA GISS method, which in turn estimates a larger fraction of land area 
than the CRU method.  Since each method is utilizing identical data, this plot shows how willing each 
algorithm is to extrapolate the available observations to regions with no nearby observations.  It is not 
surprising that CRU is the most limiting since it uses data only in the same 5°x5° grid box where the data 
is reported.  The other two techniques each allow data to be extrapolated over more than 1000 km 
(equivalent to more than 10° at the equator).  Of course, the fact that such extrapolations are made says 
nothing about their accuracy, which will be addressed in further sections. 

 

Figure 3: Comparison of the fraction of Earth’s land surface over which each method reports a value.  Since each method is 
using identical data, this figure shows the willingness of each algorithm to extrapolate.  At all times, CRU has a significant 
number of empty grid cells, while GISS and Berkeley Earth fill out nearly the entire globe during the 20th century.  The step-
change in coverage circa 1955 corresponds to the initiation of weather monitoring efforts in Antarctica. 



Accuracy of Global Land Averages 
We will begin our examination of the efficacy of the different methods by considering how well they 
each reproduce the global land average.  In Figure 4 we show the typical error in reproducing the 12-
month moving average of global land surface temperatures.  This is found by comparing the global land 
average in each of the 50 simulated data sets to the corresponding true land average of the GCM field 
and taking the standard deviation of the respective differences across all 50 simulations.  In these plots, 
we show the two standard deviation level, corresponding roughly to a 95% confidence level.  We have 
chosen to focus on the time interval 1850 to present because CRU and GISS generally do not consider 
reconstructions before this time to be reliable.6

 

 

Figure 4: (Top) Typical error in the global land average reconstructions produced from our 50 simulated data sets.  This is 
computed for the 12-month moving average, and expressed as the two standard deviation level for the calculated errors.  
(Bottom) The relative error associated with the various reconstruction methods expressed as a ratio to the Berkeley Earth 
error. 

Here we find that Berkeley Earth is at least as accurate as the other methods, and often significantly 
superior.  From 1850 to 1900, Berkeley has slightly greater accuracy than GISS, and a somewhat greater 
advantage over CRU.  From 1900 to about 1955, GISS and Berkeley have a similar level of performance.  
During this period the largest factor limiting accuracy for both methods appears to be the absence of 
                                                            
6 CRU begins their reconstruction in 1850.  NASA GISS begins in 1880.  In both cases, the averaging methodologies 
have no problem extending further backward in time.  In the case of our “error-free” data simulations it is easy to 
consider doing early period reconstructions; however, in the real world issues of data quality become particularly 
important for the sparse early data.  In the very early period, issues of uncertainty and homogeneity analysis must 
be considered which are beyond the scope of the present discussion. 



any stations in Antarctica.  After weather stations are introduced to Antarctica in the 1950s, the 
accuracy of the Berkeley methods typically improves upon GISS by 20 to 50%.  During the 20th century, 
the error associated with the CRU method is substantially larger than the other two methods, often 
producing errors 50% to 250% greater than the Berkeley methodology.  This is consistent with our 
findings in other papers that the Berkeley Earth uncertainties are significantly lower than CRU 
uncertainties.  We believe the large errors associated with the CRU method are mainly caused by the 
incompleteness of their reconstructed temperature field (i.e. Figure 3). 

In Figure 5 we show a similar estimate of the error associated with measuring decadal averages of the 
land-surface temperature.  As in Figure 4, Berkeley Earth is often slightly more accurate than GISS in 
determining the decadal average temperatures and several times more accurate than CRU. 

 

Figure 5: Same as Figure 4, but for 10-year moving averages of the land surface data rather than the 12-month moving 
averages presented in Figure 4. 

Figure 6 shows similar results to Figures 4 and 5 expressed at a monthly level.  Here we observe that 
there is a large degree of seasonal variability.  Even though the average seasonal cycle has been 
removed, there is still higher spatial variability during Northern Hemisphere winter than in any other 
season.  This limits the ability to accurately reconstruct the field, and hence larger reconstruction errors 
occur during Northern Hemisphere winter than any other season.  To our knowledge the uncertainty 
estimates published by groups other than Berkeley Earth generally don’t explicitly declare a seasonal 
variation in their ability to perform these reconstructions; nonetheless, such seasonal noise is present to 
varying degrees in all three reconstructions studied.  Seasonal variations in error are included in the 
uncertainties reported by Berkeley Earth.  Beyond that, the pattern observed is similar to the pattern 



observed for the annual and decadal averages.  In general, the performance of Berkeley Earth slightly 
surpasses GISS and substantially surpasses CRU. 

 

Figure 6: Same as Figures 4 and 5, though showing monthly values rather than moving averages.  Here we observe that the 
error has a substantial seasonal component.  This is associated with seasonal differences in spatial variability. 

Lastly, we want to make a special note about the CRU land average.  Unlike other groups, CRU currently 
creates their land average by first averaging the hemispheres separately and then estimating the global 
land average as 2/3 times the Northern Hemisphere average plus 1/3 times the Southern Hemisphere 
average.7

                                                            
7 The Northern Hemisphere contains 67.2% of Earth’s land, which is approximately the 2/3 weight that CRU uses. 

  This is in contrast to directly weighting each populated grid cell by its land area when 
averaging.  Using the synthetic data we can evaluate whether pre-averaging the hemispheres is 
beneficial.  In Figure 7, we compare CRU’s hemisphere weighing to a more direct grid cell weighted 
average using the error in the 12-month moving average as a measure of performance.  The result is 
somewhat ambiguous.  From roughly 1850 to 1900 the CRU hemispheric weighting does reduce the 
overall uncertainty.  From around 1900 to 1950, the two approaches are comparable.  However, from 
roughly 1950 to the present day, we find that CRU’s preferred technique is actually worse than 
weighting and averaging the occupied grid cells directly. 



 

Figure 7: Comparison of the current CRU land average technique using hemisphere weighting to an average where each grid 
cell is individually weighted by the land area it contains.  We find that CRU’s current method is superior during the 19th 
century, but generally increases the error during the latter half of the 20th century. 

Mapping Accuracy 
Having examined the ability of these methods to reconstruct the global land average, we now look at 
their accuracy in reproducing the variations in the local field.  Because the different averaging methods 
populate different number of grid cells from the available data, we will do this analysis in two parts.  
First, we will look at the average error in grid cells where all three methods report a value.  
Subsequently, we will look at the error in measuring grid cells reported by both Berkeley Earth and GISS. 

In Figure 8, we show the average error in reconstructing the 12-month moving average at the typical 
5°x5° grid cell populated by all three groups.  Here we find that Berkeley provides the most accurate 
estimate of each grid cell.  However, unlike the previous section, we find that the CRU method provides 
the second best average with GISS lagging significantly behind.  As discussed in a separate document, 
the GISS method uses distance weighted averaging out to 1200 km, and this has the general effect of 
blurring out fine details.  We believe it is likely that this blurring limits the ability of the GISS technique 
to accurately capture local details.  If the local error in GISS’s reconstructions are being generated 
primarily by this blurring effect it also helps to explain why the addition of more data throughout the 
20th century did little to improve the local accuracy of GISS’s reconstructions.  Ultimately though, we 
note that Berkeley Earth improves on both of these techniques in measuring the local structure.  During 



the 20th century, local errors associated with the CRU method appear to be about 50% larger than 
Berkeley Earth, while GISS errors are 100 to 150% larger. 

 

Figure 8: Average error in the 12-month moving average estimated at the typical grid cell, stated at the 2 standard deviation 
level.  The error is computed on a 5°x5° grid using at each time only those grid cells where all three methodologies are able 
to report a value. 

In Figure 9, we provide the same information as in Figure 8, but calculating the typical error in estimates 
of the 10-year moving average at each populated grid cell.  As before, Berkeley Earth is usually superior 
to CRU, which is usually superior to GISS.  However, at this longer time scales we can also observe 
artifacts associated with the GISS and CRU baseline processes.  As a baseline, GISS defines the period 
1951-1980 to have zero mean at every location.  This approach to defining a baseline period, though 
often used, has the side effect that it introduces slight distortions into the reconstructed field.  
Specifically it artificially suppresses spatial variation in the field during the baseline period while also 
slightly increasing apparent variation outside the baseline interval.  This makes it easier for GISS to 
reproduce averages within the baseline interval, while also creating corresponding slight increases in 
error outside the baseline period.  CRU shows a corresponding effect for their baseline interval, 1961 to 
1990.  These side effects of using a fixed baseline period, though often of no real consequence, can 
become important when examining certain statistical properties of the field such as long-term averages, 
or the frequency of extreme events.  Since Berkeley Earth does not use this type of a normalization 
process, there is no specific interval that is favored in the Berkeley reconstruction.   



 

Figure 9: Same as Figure 8 but based upon the 10-year moving average at each location instead of the 12-month moving 
average. 

In Figure 10, we show the same information as Figures 8 and 9, except presented at monthly resolution.  
As previously shown in Figure 6, there is a substantially seasonal component affecting the accuracy of all 
three reconstructions.  The higher spatial variability associated with Northern Hemisphere winter leads 
to considerable greater errors in the reconstruction of the local field during that season.  For GISS in 
particular, we find a more than 50% increase in local error during Northern Hemisphere winter 
compared with Northern Hemisphere summer.  Berkeley Earth appears to show the mildest seasonality 
component, but still has at least a 20% increase in error in northern winter relative to northern summer. 



 

Figure 10: Same as Figures 8 and 9, but based on the typical monthly error at each occupied grid cell.  As discussed, there is a 
significant seasonal component in how accurately the temperature anomaly field can be reproduced due to greater spatial 
variability in Northern Hemisphere winter. 

In Figures 11, we show the equivalent annual average mapping errors as Figures 8, but consider all grid 
cells reported by both Berkeley Earth and GISS.  By removing the constraint that CRU also report values, 
a substantially larger portion of the Earth can be considered (often twice as large, refer to Figure 3).  As 
with the previous figures, we find that the Berkeley method reproduces the local structure of the 
simulated temperature fields more accurately than GISS.  However, the difference is somewhat less 
severe than in Figure 8, presumably due to the inclusion areas farther from the weather stations where 
both methodologies will be intrinsically less accurate.  The decadal and monthly figures at GISS reporting 
locations are similar but not shown here. 



 

Figure 11: Same as Figure 8, except that all sites reported by GISS are considered.  In many cases this means twice as much 
land area can be considered than when restricted to the CRU reconstruction locations, refer to Figure 3.  As before, Berkeley 
is found to have superior accuracy in reconstructing the local field when compared to GISS 

Accuracy of Measuring Trends 
For a final analysis using this simulated data, we measure how accurately the various averaging 
techniques allow for the measurement of trends in the global land average over time.  This is done over 
three time periods 1850 to 2005, 1900 to 2005, and 1950 to 2005.  In each case we fit the reconstructed 
monthly averages to a line and compare the slope of the fit line to the true slope in the underlying GCM 
field.   

The estimates of the error in measuring the trends are summarized in Table 1.  As was the case with the 
direct estimates of the global field, we observe that Berkeley Earth is the most accurate at measuring 
the trend in the GCM field.  Otherwise GISS is the second most accurate, while CRU typically introduces 
at least twice as much error in the measurement of land surface temperature trends as the Berkeley 
techniques. 

 Error in trend reconstruction (°C / century, 2-sigma) 
Method 1850-2005 1900-2005 1950-2005 

CRU 0.17 0.11 0.17 
NASA GISS 0.12 0.055 0.085 
Berkeley Earth 0.087 0.045 0.078 
 



It is valuable to remind the reader that the simulated data used in these calculations were created so as 
to be free from any measurement errors or other biases.  Hence, the errors reported here only reflect 
the uncertainty introduced by each averaging method in its attempt to combine sparse, spatially 
incomplete data.  Averages involving real data will have to contend with additional sources of noise and 
bias, though in some cases there may also be additional stations which would help to combat noise.   

We also note that even the worst performer in this test has estimated errors that are substantially 
smaller than the temperature trends believed to have been occurring during the twentieth century.  We 
generally believe that all of the groups are easily capable of detecting climate change; however, we also 
believe that the Berkeley methodology allows one to be more precise in doing so. 

Conclusions 
We have provided an analysis of the effectiveness of three different averaging methodologies while 
using simulated data where the underlying true evolution of the field can be known exactly.  We find 
that the Berkeley Earth method outperforms the other techniques considered in its ability to estimate 
the global land average, to reconstruct the details of the mapped field, and to measure the long-term 
trend.  Hence, we believe the Berkeley Earth technique should be preferred in the reconstruction of 
climate fields. 

In particular, the CRU methodology was found to be much less accurate at the reproduction of global 
averages and global trends than other methods and often exhibited 2 to 3 times as much error as the 
Berkeley methodology.  Their techniques may be simpler to understand, and in some cases that is a 
virtue, however their gridding approach is appreciably limited by the incompleteness of the fields they 
produce.  In the reproduction of global averages and trends, the GISS methodology was more similar in 
accuracy to the Berkeley methods, with only a 10-60% increase in error. 

However, in the examination of mapped fields, GISS had the poorest performance, with local errors 
exceeding the errors in the Berkeley method by a factor of 2 to 3.  CRU had a better performance at the 
reproduction of the local field, with a 50% increase in error over Berkeley being typical.  We believe that 
the large-scale averaging intrinsic to the GISS method tends to blur out the details of the temperature 
anomaly field, and that it is as a consequence of this blurring that GISS is less accurate in its ability to 
reproduce the mapped field. 

The present analysis has considered only the uncertainties introduced by the different methods of 
interpolating discrete temperature data.  Beyond this, a full analysis of uncertainty still has to consider 
the effects of noise and bias as it affects the accuracy of the data.  Such concerns will be explored 
elsewhere.  However, the uncertainty associated with the reconstruction method itself imposes a 
fundamental limit on the possible accuracy of each reconstruction since noise and other biases can only 
serve to make the resulting reconstructions less accurate.  Hence understanding the relative 
effectiveness of each averaging method is important in understanding the ultimate uncertainty 
associated with the reconstruction of global climate. 
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