
Appendix to Berkeley Earth Temperature Averaging Process:  

Details of Mathematical and Statistical Methods 

 
This Appendix is meant for those who wish to duplicate the methods that we describe in the main paper. Perhaps 

even more helpful is the detailed computer code, which is available online at www.BerkeleyEarth.org. This code is 

written in the programming language Matlab, one that we consider relatively transparent even to those who have not 

studied this particular language. Because this supplement goes into great detail, we will use a more formal notation 

than we used in the descriptive paper. Unfortunately this notation, to include all the subtleties, works best if it is not 

identical to the notation used in the main paper; that paper was written for clarity; this appendix is written to make it 

easier for a programmer to duplicate. In addition, we will adopt the standard notation used in statistics, in which a 

hat above a quantity signifies that it is an estimate of a parameter, not the true value. 

 Let 𝑇 𝑥, 𝑡  be the true global temperature field in space and time, a field that we will never know but that 

we will try to estimate. Define the decomposition: 

 𝑇 𝑥, 𝑡 = 𝜃 𝑡 + 𝐶 𝑥 +𝑊 𝑥, 𝑡  (1) 

These quantities are similar to the ones we defined in the main paper. Note that we are using the quantity 𝜃 𝑡  to 

represent the same quantity that we designated Tavg in that paper. 𝜃 𝑡   refers to the true value of the global average, 

while we will subsequently use a hat notation, 𝜃 𝑡 , to indicate our estimate of the average. In order to make the 

decomposition unique, we specify the following additional constraints: 

 

𝐶 𝑥 𝑑𝑥!"#$!!!  !"#$%&' = 0, 

𝑊 𝑥, 𝑡 𝑑𝑥!"#$!!!  !"#$%&' = 0, for all 𝑡, 

𝑊 𝑥, 𝑡 𝑑𝑡!"#$!!!  !"#$%&' = 0, for all locations 𝑥 

(2) 

In the main paper we derived these from a simple Kriging model. In this supplement we simply describe them as 

constraints on the temperature function. 

 Given this decomposition, 𝜃 𝑡  corresponds to the global mean temperature as a function of time. 

𝐶 𝑥   captures the time-invariant spatial structure of the temperature field, and hence can be seen as a form of spatial 

“climatology”, though it differs from the normal definition of a climatology by a simple additive factor 

corresponding to the long-term average of 𝜃 𝑡 . The last term, 𝑊 𝑥, 𝑡 , is meant to capture the “weather”, i.e. those 

fluctuations in temperature over space and time that are neither part of the long-term evolution of the average nor 

part of the stable spatial structure. We will estimate the global temperature field by simultaneously constraining all 

three pieces of 𝑇 𝑥, 𝑡  using the available data. A summary of all the key symbols may be found in the Symbol 

Table at the end of this Appendix.  

 As this study is based solely on the use of land-based temperature data, the spatial integrals in equation (2) 

shall be restricted to only the Earth’s land surface. As a result, we identify 𝜃 𝑡  with the land temperature average 

only. Rather than defining a specific base interval (e.g. 1950-1980) as has been common in prior work, the algorithm 

described below shall reconcile all time periods simultaneously. As a result, the time integral in equation Error! 



Reference source not found. should be understood as occurring over the full multi-century period from which 

data is available. As a side effect of this approach, 𝑊 𝑥, 𝑡  will also incorporate some multi-decadal changes that 

might more typically be described as changes in climate rather than weather. 

 We break 𝐶 𝑥  into a number of additional components: 

 𝐶 𝑥 = 𝜆   latitude 𝑥 + ℎ   elevation 𝑥 + 𝐺(𝑥)   (3) 

Here 𝜆 depends only on the latitude of 𝑥, ℎ depends only on the elevation of 𝑥, and 𝐺(𝑥) is the “geographic 

anomaly”, i.e. the spatial variations in mean climatology that can’t be explained solely by latitude and elevation. The 

𝐺(𝑥) will include many large-scale climate patterns, such as the effects of the Gulf Stream. With appropriate models 

for 𝜆 and ℎ it is possible to explain about 95% of the variance in annual mean temperatures over the surface of the 

Earth in terms of just latitude and elevation. The functional forms of 𝜆, ℎ, and 𝐺(𝑥) will be discussed below. 

 Consider a temperature monitoring station at location 𝑥!, we expect the temperature datum 𝑑! 𝑡!  to ideally 

correspond to 𝑇 𝑥! , 𝑡! = 𝜃 𝑡! + 𝐶 𝑥! +𝑊 𝑥! , 𝑡! . More generally, let: 

 𝑑! 𝑡! = 𝜃 𝑡! + 𝑏! +𝑊 𝑥! , 𝑡! + 𝜖!,! (4) 

where 𝜖!,! is defined to be error in the i-th station and the j-th time step, and 𝑏! is the “baseline temperature” for the 

i-th station necessary to minimize the error. Further:  

 𝑏! ≈ 𝐶 𝑥!  (5) 

 The difference between the expected climatology at each station and apparent baseline, 𝑏!, can often be 1-

2°C due to misreported station locations, instrumental biases, and local-scale features not captured by the 

climatology field. This motivates us to measure the apparent baseline at each station as part of our analysis 

procedure, rather than relying on a smooth climatology to extract this information. Rather, the analysis procedure 

presented here does the reverse. The smooth climatology field is inferred from the apparent baselines at each station. 

 As mentioned earlier, for each of the parameters and fields discussed we adopt a “hat” notation, e.g. 𝜃 𝑡! , 

𝑏!, to denote values that are estimated from data and distinguish them from the true fields specified by definition. 

Given equation Error! Reference source not found., it is natural to consider finding fields that minimize 

expressions of the form 

 𝑆𝑆𝐷 =    𝑑! 𝑡! − 𝜃 𝑡! − 𝑏! −𝑊 𝑥! , 𝑡!
!

!,!

≈    𝜖!,!!
!,!

 (6) 

 

where SSD denotes the sum of square deviations. The minimization might attempt to minimize the error terms. 

Though appealing, Error! Reference source not found. is ultimately misguided as 𝑑! 𝑡!  is distributed highly 

non-uniformly in both space and time, and the temperature histories at neighboring stations are highly correlated. A 

naïve application of Error! Reference source not found. would result in 𝜃 𝑡!  biased towards the most densely 

sampled regions of the globe. However, Error! Reference source not found. does inspire our first natural set of 

constraint equations, namely 



 𝑏! =
𝜔!,! 𝑑! 𝑡! − 𝜃 𝑡! −𝑊 𝑥! , 𝑡!!

𝜔!,!!
 

(7) 

 

Since 𝑏! is specific to a single station, there is no disadvantage to simply stating that it be chosen to minimize the 

error at that specific station. The weights, 𝜔!,!, are initially set all equal to 1. However, as discussed in the section on 

outlier detection, a small fraction of these weights are adjusted to remove apparent outliers. 

 To determine the other fields, it is instructive to consider the properties that one would expect the 

“weather” field,  𝑊 𝑥! , 𝑡!  to have. To begin, it should have (at least approximately) zero mean over space and time 

in accordance with equation Error! Reference source not found.. Secondly, the weather fluctuations should be 

highly correlated over short distances in space. These considerations are very similar to the fundamental 

assumptions of the spatial statistical analysis technique known as Kriging [1,2]. Provided the assumptions of Kriging 

are met, this interpolation technique provides best linear unbiased estimator of an underlying spatial field. This 

technique is also sometimes known as Gaussian Process Regression. 

 The simple Kriging estimate of a field, 𝑀 𝑥 , from a collection of measurements 𝑀! having position𝑥!s is: 

 𝑀 𝑥 = 𝐾! 𝑥 𝑀!

!

!!!

 (8) 

 

 
𝐾! 𝑥
⋮

𝐾! 𝑥
=

𝜎!! Cov 𝑥!, 𝑥!
Cov 𝑥!, 𝑥! 𝜎!!

⋯ Cov 𝑥!, 𝑥!
Cov 𝑥!, 𝑥!

⋮ ⋱ ⋮
Cov 𝑥! , 𝑥! Cov 𝑥! , 𝑥! ⋯ 𝜎!!

!!

Cov 𝑥, 𝑥!
⋮

Cov 𝑥, 𝑥!
 

(9) 

 

where  𝜎!! is the variance at the i-th site and Cov 𝑎, 𝑏  is the covariance between sites 𝑎 and 𝑏. If the covariance is 

known and 𝑀! are sampled from an underlying population having zero mean, then equation Error! Reference 

source not found. provides the best linear unbiased estimate of the field𝑀 𝑥 . In particular, Kriging describes a 

natural way to determine the weight that each record should receive in order to avoid overweighting densely 

sampled regions. This awareness of station density is an intrinsic part of the inverse covariance matrix. 

 In order to take advantage of the statistical properties of simple Kriging, it is necessary that the data field 

on which the interpolation is based have zero mean. However, this limitation is removed by “ordinary Kriging” 

where the addition of extra parameter(s) is used to transform the data set by removing known spatial structure [2]. In 

this case, it is natural to identify the values used for Kriging as: 

 𝑀! = 𝑑! 𝑡! − 𝜃 𝑡! − 𝑏! (10) 

which would be expected to have zero mean per equation Error! Reference source not found.. For the 

“ordinary Kriging” approach the ideal parameterization is found by finding the values for 𝜃 and  𝑏!  that minimize 

the average variance of the field, e.g. 

 Minimize: 𝑀 𝑥, 𝑡
!
𝑑𝑥!"#$!!!  !"#$%&'  (11) 

 In most practical uses of Kriging it is necessary to estimate or approximate the covariance matrix in 

equation Error! Reference source not found. based on the available data [1,2]. NOAA also requires the 



covariance matrix for their optimal interpolation method. We will adopt an approach to estimating the covariance 

matrix that preserves the natural spatial considerations provided by Kriging, but also shares characteristics with the 

local averaging approach adopted by NASA GISS [3,4]. If the variance of the underlying field changes slowly as a 

function of location, then the covariance function can be replaced with the correlation function, 𝑅 𝑎, 𝑏 , which leads 

to the formulation that: 

 
𝑆!! 𝑥, 𝑡!

⋮
𝑆!! 𝑥, 𝑡!

=

1 𝑅 𝑥!! , 𝑥!!
𝑅 𝑥!! , 𝑥!! 1

⋯
𝑅 𝑥!! , 𝑥!!
𝑅 𝑥!! , 𝑥!!

⋮ ⋱ ⋮
𝑅 𝑥!! , 𝑥!! 𝑅 𝑥!! , 𝑥!! ⋯ 1

!!

𝑅 𝑥, 𝑥!!
⋮

𝑅 𝑥, 𝑥!!
 

(12) 

 

Where 𝑎!… 𝑎! denotes the collection of stations active at time 𝑡!. This leads to the Kriging-based description of the 

weather: 

 𝑊 𝑥, 𝑡! = 𝜉!,!𝑆!! 𝑥, 𝑡! 𝑑!! 𝑡! − 𝜃 𝑡! − 𝑏!!

!

!!!

 (13) 

 Like the 𝜔!,! in equation Error! Reference source not found., the 𝜉!,!  are adjustment factors 

described in the section on dealing with outliers, these factors are set to 1 initially and remain near 1 in most cases. 

Thus the “weather” field is constructed as a spatially-weighted linear combination of the fluctuations in the data 

𝑑! 𝑡!  relative to the global trend 𝜃 𝑡!  and the station’s baseline   𝑏!. 

 The Kriging formulation is most efficient at capturing fluctuations that have a scale length comparable to 

the correlation length; however, it also permits the user to find finer structure if more densely positioned data is 

provided. In particular, the Kriging estimate of the field will necessarily approach the underlying field exactly as the 

density of data increases. This feature of Kriging contrasts with the NASA GISS and Hadley / CRU averaging 

approaches which smooth over fine structure. 

 A further modification is made by assuming that 𝑅 𝑎, 𝑏  can be approximated as 𝑅 𝑑 , where 𝑑 = 𝑎 − 𝑏  

denotes the distance between 𝑎 and 𝑏. This allows a parameterization the correlation field as a simple function of 

one variable, though doing so admittedly neglects differences in correlation that might be related to spatially varying 

factors such as latitude, altitude, and local vegetation, etc. The correlation function is parameterized using the 

“spherical” correlation function [5,6]: 

 𝑅 𝑑 = 𝛼 1 −
𝑑

𝑑!"#

!

1 +
𝑑

2  𝑑!"#
+ 𝜇 for  all  𝑑 < 𝑑!"#

0 otherwise
 (14) 

The free parameters 𝛼,𝑑!"# , and  𝜇 are determined by fitting this functional form to a reference data set created by 

randomly selecting 500,000 pairs of stations that have at least ten years of overlapping data, and measuring the 

correlation of their non-seasonal temperature fluctuations as function of distance. The resulting data set and fit are 

presented in Figure 1. Pair selection was accomplished by choosing random locations on the globe and locating the 

nearest temperature records, subject to a requirement that it be no more than 100 km from the chosen random 

location. 



 The functional form of equation Error! Reference source not found. is one a small number of families 

of analytic functions known to describe valid correlation matrices over a sphere [7]. The properties of a correlation 

matrix require that it must always be positive definite for all possible sets of points in the space being considered, 

which restricts the functional forms that 𝑅 𝑑  can have. The functional form presented here was chosen because it 

gave the best fit to the reference data among known families of valid functions. 

 The small constant term 𝜇 in equation (14) measures the correlation over the very largest distance scale; 

however, for the purposes of equation (12) it is computationally advantageous to set 𝜇 = 0 which we did by 

rescaling the rest of equation Error! Reference source not found. by 1/(1 − 𝜇) to compensate near 𝑑 = 0. 

This allows us to treat stations at distances greater than 𝑑!"# as completely uncorrelated, which greatly simplifying 

the matrix inversion in equation Error! Reference source not found. since a majority of the matrix elements 

are now zeros. Figure 1 shows that the correlation structure is substantial out to a distance of ~1000 km 

(𝑅 1000  km ! = 0.24), and non-trivial up to ~1800 km (𝑅 1800  km ! = 0.05) from each site. It should be 

emphasized that this is the correlation structure of the monthly average field. On shorter timescales the correlation 

length will also generally be shorter, and it is only by choosing to work with monthly data that we are able to 

observe a field which is relatively smooth over such substantial distances.  

 

 



Figure	   1.	   	  Mean	   correlation	   versus	   distance	   curve	   constructed	   from	   500,000	   pair-‐wise	   comparisons	   of	   station	   temperature	  
records.	  	  Each	  station	  pair	  was	  selected	  at	  random,	  and	  the	  measured	  correlation	  was	  calculated	  after	  removing	  seasonality	  and	  
with	  the	  requirement	  that	  they	  have	  at	  least	  10	  years	  of	  overlapping	  data.	  	  Red,	  green,	  and	  yellow	  curves	  show	  a	  moving	  range	  
corresponding	  to	  the	  inner	  80,	  50,	  and	  20%	  of	  data	  respectively.	  	  The	  black	  curve	  corresponds	  to	  the	  modeled	  correlation	  vs.	  
distance	  reported	  in	  the	  text.	   	  This	  correlation	  versus	  distance	  model	  is	  used	  as	  the	  foundation	  of	  the	  Kriging	  process	  used	  in	  
the	  Berkeley	  Average.	  

 

 Based on the data, the best fit values in equation Error! Reference source not found. were 𝛼 = 

0.8741, 𝑑!"# = 3163.5 km, and 𝜇 = 0.0180. These were the values we used in the Berkeley Earth temperature 

reconstruction method. 

 Though these values were used in the averaging model, the global scale results were found to be quite 

insensitive to the specific parameter choices in the correlation function. Experiments where 𝑑!"# was adjusted by 

large factors (e.g. +100% or -50%) were conducted and the changes in the global annual average were generally 

smaller than or similar to the uncertainties arising from other factors. This suggests that the Berkeley averaging 

method is relatively insensitive to the details of𝑅 𝑑 . This is not surprising given that the separation distance 

between stations is often much less than the effective correlation length.  

 In Figure 2 we show similar fits to Figure 1 using station pairs restricted by either latitude or longitude. In 

the case of longitude, we divide the Earth into 8 longitude bands and find that the correlation structure is very 

similar across each. The largest deviation occurs in the band centered at 23 W, which had reduced correlation at 

short distances. This band is one of several that included relatively few temperature stations as it spans much of the 

Atlantic Ocean, and so this deviation might be primarily a statistical fluctuation. However, the deviations observed 

in Figure 2 for latitude bands are more meaningful. The latitude bands show decreasing short-range correlation as 

one approaches the equator and a corresponding increase in long-range correlation. Both of these effects are 

consistent with decreased weather variability in most tropical areas.  

 

Figure	  2.	  	  Correlation	  versus	  distance	  fits,	  similar	  to	  	  Figure	  1,	  but	  using	  only	  stations	  selected	  from	  portions	  of	  the	  Earth.	  	  The	  
Earth	  is	  divided	  into	  eight	   longitudinal	  slices	  (Left)	  or	  seven	  latitudinal	  slices	  (Right),	  with	  the	  slice	  centered	  at	  the	  latitude	  or	  
longitude	  appearing	  in	  the	  legend.	  	  In	  each	  panel,	  the	  global	  average	  curve	  (Figure	  1)	  is	  plotted	  in	  black.	  	  All	  eight	  longitudinal	  
slices	   are	   found	   to	   be	   similar	   to	   the	   global	   average.	   	   For	   the	   latitudinal	   slices,	  we	   find	   that	   the	   correlation	   is	   systematically	  
reduced	  at	  low	  latitudes.	  	  This	  feature	  is	  discussed	  in	  the	  text.	  



 

 Though not shown, we also find that the East-West correlation length is about 18% greater than the North-

South correlation length. This is consistent with the fact that weather patterns primarily propagate along East-West 

bands.  

 The variations discussed above, though non-trivial, are relatively modest for most regions (except perhaps 

at the equator). As previously noted, when considering large-scale averages the Kriging process described here is 

largely insensitive to the details of the correlation function, so it is expected that small changes in the correlation 

structure with location or orientation can be safely ignored. Hence, the current construction applies only the simple 

correlation function given by equation (14). However, developing an improved correlation model that incorporates 

additional spatial variations is a likely topic for future research. 

We note that the correlation in the limit of zero distance, 𝑅 0 = 0.874, has a natural and important physical 

interpretation. It is an estimate of the correlation that one expects to see between two typical weather stations placed 

at the same location. By extension, if we assume such stations would report the same temperature except that each is 

subject to random and uncorrelated error, then it follows that 1 − 𝑅 0 = 12.6% of the non-seasonal variation in the 

typical station record is caused by noise processes that are unrelated to the variation in the underlying temperature 

field.  

 Since the average root-mean-square non-seasonal variability is ~2.0°C, it follows that an estimate of the 

short-term noise for the typical month at a typical station is ~0.49°C at 95% confidence. It must be emphasized that 

such estimates of noise incorporate all the variations that exists between stations, including those attributable to 

different instrumentation, different measurement procedures, different instrumental settings or microclimates, etc. 

Further, this estimate is also influenced by both historical and regional differences in the way temperature has been 

measured. Prior studies [8] on the reproducibility of temperature observations using consistent instrumentation have 

generally reported much greater precision, e.g. +/- 0.06°C,so it is likely that most of the noise we report here is due 

to differences in instrumentation and measurement approaches. For example, a station that reports mean temperature 

by calculating the simple of average of max and min extremes may vary considerably from stations that average data 

recorded hourly, or via other processes. Our results suggest that estimates based on identical instrumentation and 

methods fail to capture most of the noise that actually exists in the historical weather observing system. However, 

others authors [8] generally assign a large uncertainty to the homogenization process (e.g. 0.8°C). We suspect that 

the large uncertainty they associate with homogenization essentially captures much the same short-term noise that 

we observe.  

 The impact of short-term local noise on the ultimate temperature reconstruction can be reduced in regions 

where stations are densely located and thus provide overlapping coverage. The simple correlation function described 

above would imply that each temperature station captures ! ! !!!
!!!

= 0.43% of the Earth’s temperature field; 

equivalently, 235 ideally distributed weather stations would be sufficient to capture nearly all of the expected 

structure in the Earth’s monthly mean anomaly field. This is similar to the estimate of 110 to 180 stations provided 

by Jones (1994) [9]. We note that the estimate of 235 stations includes the effect of measurement noise. Removing 

this consideration, we would find that the underlying monthly mean temperature field has approximately 185 



independent degrees of freedom. It should be emphasized that such estimates apply to the monthly mean field, 

which is inherently much smoother than the daily average or instantaneous field. In practice though, quality control 

and bias correction procedures will substantially increase the number of records required for adequate constraint of 

uncertainties. 

 The new Kriging coefficients 𝑆! 𝑥, 𝑡!  defined by equation (12) also have several natural interpretations. 

Firstly the average of  𝑆! 𝑥, 𝑡!  over land: 

0 ≤
𝑆! 𝑥, 𝑡! 𝑑𝑥

1  𝑑𝑥
< 1 

(15) 

 

can be interpreted as the total weight in the global land-surface average attributed to the i-th station at time 𝑡!. 

Secondly, the use of correlation rather than covariance in our construction, gives rise to a natural interpretation of 

the sum of 𝑆! 𝑥, 𝑡!  over all stations. Because Kriging is linear and the correlation matrix is positive definite, it 

follows that: 

0 ≤ 𝐹 𝑥, 𝑡! ≡ 𝑆! 𝑥, 𝑡!
!

≤ 1 (16) 

 

Here 𝐹 𝑥, 𝑡!  has the qualitative interpretation as the fraction of the 𝑊 𝑥, 𝑡!  field that has been effectively 

constrained by the data. The above is true even though individual terms 𝑆! 𝑥, 𝑡!  may in general be negative. Since 

the true temperature anomaly estimate is  

𝑇 𝑥, 𝑡! − 𝐶 𝑥   

= 𝜃 𝑡! +𝑊 𝑥, 𝑡!   

= 𝜃 𝑡! + 𝑆! 𝑥, 𝑡! 𝑑! 𝑡! − 𝑏! − 𝜃 𝑡!
!

  

= 1 − 𝐹 𝑥, 𝑡! 𝜃(𝑡!) + 𝑆! 𝑥, 𝑡! 𝑑! 𝑡! − 𝑏!
!

 

(17) 

 

it follows that in the limit of dense coverage, 𝐹 𝑥, 𝑡! → 1, the temperature estimate at 𝑥 depends only on the local 

data 𝑑! 𝑡! , while in the limit of no coverage, 𝐹 𝑥, 𝑡! ≪ 1, the temperature field at 𝑥 is simply assumes the same 

value as the global average of the data. For diagnostic purposes it is also useful to define: 

 
𝐹 𝑡! =

𝐹 𝑥, 𝑡!   𝑑𝑥
1  𝑑𝑥

 (18) 

which provides a measure of total field completeness as a function of time. 

 Under the ordinary Kriging formulation, we would expect to find the parameters 𝜃 𝑡!  and 𝑏! by 

minimizing a quality of fit metric: 

Minimizing this quantity can be shown to be equivalent to satisfying at all times the set of equations given by 

 𝑊 𝑥, 𝑡!   𝐹 𝑥, 𝑡!   𝑑𝑥 = 0 (20) 

This is nearly identical to the constraint in equation (2) that: 

 𝑊 𝑥, 𝑡!
!
𝑑𝑥 (19) 



 𝑊 𝑥, 𝑡!   𝑑𝑥 = 0 (21) 

This latter criterion is identical to equation (20) in both the limit 𝐹 𝑥, 𝑡! → 1, indicating dense sampling, and the 

limit 𝐹 𝑥, 𝑡! → 0, indicating an absence of sampling since 𝑊 𝑥, 𝑡!  also becomes 0 in this limit. We choose to use 

equation (21) as our fundamental constraint equation rather than equation (20). This implies that our solution will be 

similar but not identical to the ordinary Kriging solution in the spatial mode; however, taking this approach confers 

several advantages. First, it ensures that 𝜃 𝑡!  and 𝑏! retain their natural physical interpretation. Secondly, 

computational advantages are provided by isolating the 𝑆! 𝑥, 𝑡!  so that the integrals might be performed 

independently for each station.  

 Once 𝑊 𝑥, 𝑡!  has been found via equation (21), it is possible to evaluate 𝑊 𝑥, 𝑡!   𝐹 𝑥, 𝑡!   𝑑𝑥 as an 

estimate of the error introduced via this approximation. Given the relationship to the minimization constraint, these 

integrals provide a direct estimate of the error this approximation introduces in 𝜃 𝑡! . In the case of the GHCN data, 

the difference created by using equation (21) rather than equation (20) is nearly always much less than the 

uncertainty arising from other effects, and hence does not appear to be significant. 

Given equations (13) and (21) it follows that: 

 𝜃 𝑡! =
𝜉!,! 𝑆!! 𝑥, 𝑡! 𝑑𝑥 𝑑!! 𝑡! − 𝑏!!

!
!!!

𝜉!,! 𝑆!! 𝑥, 𝑡! 𝑑𝑥
!
!!!

 (22) 

Combined with equation (7) this constrains the global average temperature 𝜃(𝑡!) nearly completely. Though not 

immediately obvious, constraints (7), (13) and (21) leave a single unaccounted for degree of freedom. Specifically 

one can adjust all 𝜃(𝑡!) by any arbitrary additive factor provided one makes a compensating subtraction from all 𝑏!. 

This last degree of freedom can be removed by specifying the climatology 𝐶 𝑥 , applying the zero mean criterion 

from equation (2), and assuming that the local anomaly distribution (5) will also have mean 0. This implies:  

 𝐶 𝑥! = 𝜆 𝑥! + ℎ 𝑥! + 𝐺(𝑥!) ≈ 𝑏! (23) 

We parameterize ℎ 𝑥  as a simple quadratic function of elevation: 

 ℎ 𝑥! = 𝛽   Elevation 𝑥! + 𝛾   Elevation 𝑥!
!
 (24) 

Where 𝛽 and 𝛾 are parameters to be determined. Similarly 𝜆 𝑥!  is parameterized as cubic spline function of the 

𝑐𝑜𝑠   Latitude 𝑥!  with 16 knots. These 16 free parameters, as well as the free parameters related to elevation are 

determined empirically as part of a Kriging process used in the construction of 𝐺(𝑥!). The Kriging formulation for 

𝐺(𝑥!) is the same as that developed for 𝑊(𝑥! , 𝑡!) above except that  



 
𝐵! 𝑥
⋮

𝐵! 𝑥
=

1 + 𝑛! − 1 𝑅 0
𝑛!

𝑅 𝑥!, 𝑥!

𝑅 𝑥!, 𝑥!
1 + 𝑛! − 1 𝑅 0

𝑛!

⋯ 𝑅 𝑥!, 𝑥!
𝑅 𝑥!, 𝑥!

⋮ ⋱ ⋮

𝑅 𝑥! , 𝑥! 𝑅 𝑥! , 𝑥! ⋯
1 + 𝑛! − 1 𝑅 0

𝑛!

!!

𝑅 𝑥, 𝑥!
⋮

𝑅 𝑥, 𝑥!
 

(25) 

 

 
𝐺 𝑥 = 𝐵! 𝑥 𝑏! − 𝜆 𝑥 − ℎ 𝑥

!

!!!

 
(26) 

where  𝑛! is the number of months of data for the i-th station. The modified diagonal terms on the correlation matrix 

are the natural effect of treating the value 𝑏! as if it were entered into the Kriging process 𝑛!   times, which gives 

greater weight to values of 𝑏! that are more precisely constrained by longer records. The free parameters for 𝜆 𝑥  

and ℎ 𝑥  are then constrained minimizing: 

 𝐺 𝑥 ! 𝑑𝑥 (27) 

 As noted previously the factors associated with latitude and altitude collectively capture ~95% of the 

variance in the stationary climatology field. Most of the remaining structure is driven by dynamical processes (e.g. 

ocean and atmospheric circulation) or by boundary conditions such as the nearness to an ocean. The characteristics 

of the fit for 𝐶 𝑥!  using GHCN data is shown in Figure 3. 

 

 

Figure	  3:	  Shows	  the	  characteristics	  of	  the	  climatology	  fit	  using	  GHCN	  data.	  	  (Left)	  Latitude	  dependent	  component	  of	  the	  fit,	  
𝝀 𝒙 ,	   shown	  as	  a	   red	   curve	  and	  compared	   to	   the	  data	  expressed	  as	  𝒃𝒊 − 𝒉 𝒙𝒊 − 𝑮(𝒙𝒊).	   	   The	  position	  of	   spline	  knots	  are	  
indicated	  with	  vertical	   lines.	   	   The	   slight	  bump	  circa	  15	  N	   is	   associated	  with	   the	  elevated	   temperatures	  across	   the	  Sahara.	  	  
(Center)	  Elevation	  dependent	  component	  of	  the	  fit	  𝒉 𝒙 	  expressed	  as	  a	  red	  curve	  and	  compared	  to	  the	  data	  expressed	  as	  
𝒃𝒊 − 𝝀 𝒙𝒊 − 𝑮(𝒙𝒊).	  	  (Right)	  The	  misfit	  residuals	  𝑪 𝒙𝒊 − 𝒃𝒊,	  with	  one	  and	  two	  sigma	  standard	  deviations	  indicated	  as	  vertical	  
lines.	   	   The	   far	   outliers	   on	   the	   residual	   plot	   are	   most	   likely	   to	   be	   caused	   by	   stations	   whose	   latitude	   or	   elevation	   was	  
significantly	  misreported.	  

 



 This final normalization described here has the effect of placing the mean temperature, 𝜃(𝑡!), on an 

absolute scale such that these values are a true measure of mean temperature and not merely a measure of a 

temperature anomaly. However, the uncertainty associated with this normalization is often larger than the 

uncertainty associated with other parts of the temperature time series estimate. This occurs due to the large range of 

variations in 𝑏! from roughly 30°C at the tropics to about -50°C in Antarctica, as well as the rapid spatial changes 

associated with variations in surface elevation. However, one can ignore the uncertainty in the climatology, when 

considering temperature difference since 

 𝑇 𝑥, 𝑡! − 𝑇 𝑥, 𝑡! = 𝜃 𝑡! +𝑊 𝑥, 𝑡! − 𝜃 𝑡! −𝑊 𝑥, 𝑡!  (28) 

is independent of 𝐶 𝑥 . 

 

1. Outlier Weighting 

In this section we discuss the mathematics of our handling of point outliers, i.e. single data points that vary greatly 

from the expected value as determined by the local average. Removal of outliers is done by defining the difference, 

Δ! 𝑡! , between a temperature station’s reported data and the expected value at that same site: 

Δ! 𝑡! =   𝑑! 𝑡! − 𝑏! − 𝜃 𝑡! −𝑊!(𝑥! , 𝑡!) (29) 

where  𝑊! 𝑥! , 𝑡! approximates the effect of constructing the 𝑊 𝑥! , 𝑡!  field without the influence of the i-th station: 

𝑊! 𝑥! , 𝑡! = 𝑊 𝑥! , 𝑡! − 𝑆! 𝑥! , 𝑡! (𝑑! 𝑡! − 𝑏! − 𝜃 𝑡! ) (30) 

The scale of the typical measurement error (𝑒 ≈ 0.62°C) is estimated from: 

𝑒! =
Δ! 𝑡!

!
!,!

1!,!
 

(31) 

 

The outlier weight adjustment, originally mentioned in equation (7), is then defined as 

 𝜔!,! =
1 if Δ! 𝑡!

!
≤ (2.5𝑒)!

2.5𝑒 Δ! 𝑡! otherwise
 

(32) 

 

Equation (32) thus specifies a downweighting term to be applied for point outliers that are more than 2.5𝑒 from the 

expected value based on the interpolated field.  

 This choice of target threshold, 2.5𝑒, is partly arbitrary but was selected with the expectation that most of 

the measured data should be unaffected. If the underlying data fluctuations were normally distributed, we would 

expect this process to crop 1.25% of the data. In practice, we observe that the data fluctuation distribution tends to 

be intermediate between a normal distribution and a Laplace distribution. In the Laplace limit, we would expect to 

crop 2.9% of the data, so the actual exclusion rate can be expected to be intermediate between 1.25% and 2.9% for 

the typical station record. 

 Of course the goal is not to remove legitimate data, but rather to limit the impact of erroneous outliers. In 

defining equation (32), we adjusted the weight of outliers to a fixed target, 2.5𝑒, rather than to simply downweight 

them to zero. This helps to ensure numerical stability.  

 



2. Reliability Weighting 

In addition to point outliers, climate records often vary for other reasons that can affect an individual record’s 

reliability at the level of long-term trends. For example, we also need to consider the possibility of gradual biases 

that lead to spurious trends. In this case we assess the overall “reliability” of the record by measuring each record’s 

average level of agreement with the expected field 𝑇 𝑥, 𝑡  at the same location. 

 For each station, the average misfit for the entire time series can be expressed as: 

 
𝜀!! =

min  { Δ! 𝑡!
!
, 25𝑒!}!

1!
 

(33) 

 

We introduce the “min” function to avoid giving too great a weight to the most extreme outliers when judging the 

average reliability of the series. A metric of relative reliability is then defined as: 

 
𝜑! =

2𝑒!

𝑒! + 𝜀!!
 

(34) 

 

Due to the limits on outliers imposed in equation (14), this metric has a range between 1/13 and 2, effectively 

allowing a “perfect” station to receive up to 26 times the score of a “terrible” station. This functional form was 

chosen due to several desirable qualities. First, the typical record is expected to have a reliability factor near 1, with 

poor records being more severely downweighted than good records are enhanced. Using an expression that limits the 

potential upweighting of good records was found to be necessary in order to ensure efficient convergence and 

numerical stability. A number of alternative functional forms with similar properties were also considered, but we 

found that the construction of global temperature time series was largely insensitive to the details of how the 

downweighting of inconsistent records was handled. 

 After defining this reliability factor, it is necessary to incorporate this information into the spatial averaging 

process, e.g. equation (13), by adjusting the associated Kriging coefficients. Ideally, one might use the station 

weights to modify the correlation matrix (12) and recompute the Kriging coefficients. However, it is unclear what 

form of modification would be appropriate, and frequent recomputation of the required matrix inverses would be 

computationally impractical. So, we opted for a more direct approach to the reweighting of the Kriging solution. We 

define the spatial adjustment coefficients, originally mentioned in equation (13), to be: 

 𝜉!,! =
𝜑!  𝜔!,!

𝜑!𝑆! 𝑥, 𝑡!! + 1 − 𝐹 𝑥, 𝑡!
 (35) 

 

This expression is motivated by the representation of the true anomaly in equation (17) as: 

𝜃(𝑡!) +𝑊 𝑥, 𝑡! = 1 − 𝐹 𝑥, 𝑡! 𝜃(𝑡!) + 𝑆! 𝑥, 𝑡! 𝑑! 𝑡! − 𝑏!
!

 (36) 

 

combined with the desire to leave the expected variance of the right hand side unchanged after reweighting. Because 

𝐹 𝑥, 𝑡! = 𝑆! 𝑥, 𝑡!!  it follows that 𝜉!,!𝑆! 𝑥, 𝑡!  is equal to 𝑆! 𝑥, 𝑡!  if all the reliability factors, 𝜑!, and outlier 

weights, 𝜔!,! , are set to 1. The 1 − 𝐹 𝑥, 𝑡!  term in the denominator can be understood as measuring the influence 

of the global mean field, rather than the local data, in the construction of the local average temperature estimate. The 



omission of this term in equation Error! Reference source not found.) would lead to a weighting scheme that 

is numerically unstable. 

 It is important to note that equation (35) merely says that the estimate of the local weather 𝑊 𝑥, 𝑡! should 

give proportionally greater weight to more reliable records. However, if all of the records in a given region have a 

similar value of the reliability factor 𝜑! , then they will all receive a similar weight, 𝜉!,! , regardless of the actual 

numerical value of 𝜑!. This behavior is important as some regions of the Earth, such as Siberia, tend to have broadly 

lower values of 𝜑! due to the high variability of local weather conditions. However, as long as all of the records in a 

region have similar values for 𝜑!, then the individual stations will still receive approximately equal and appropriate 

weight in the global average. This avoids a potential problem that high variability regions could be underrepresented 

in the construction the global time series  𝜃 𝑡! . 

 As noted above, the formulation of equation (35) is not necessarily ideal compared to processes that could 

adjust the correlation matrix directly, and hence this approach should be considered as an approximate approach for 

incorporating station reliability differences. In particular, the range bounds shown for 𝑆! 𝑥, 𝑡! , such as that given for 

equation (16), will not necessarily hold for 𝜉!,!𝑆! 𝑥, 𝑡! . 

The determination of the weighting factors 𝜔!,! and 𝜉!,! is accomplished via an iterative process that seeks 

convergence. Similarly, it is computationally efficient to use the value of 𝑊 𝑥! , 𝑡!  from the prior iteration when 

computing 𝑏! via equation (7). As described in the main text, the iterative process generally requires between 10 and 

60 iterations to reach the chosen convergence threshold of having no changes greater than 0.001°C in 𝜃 𝑡!  between 

consecutive iterations.  

 Implicit in the discussion of station reliability considerations are several assumptions. Firstly, the local 

weather field constructed from many station records, 𝑊 𝑥, 𝑡! , is assumed be a better estimate of the underlying 

temperature field than any individual record was. This assumption is generally characteristic of all averaging 

techniques; however, this approach cannot rule out the possibility of large scale systematic biases. Our reliability 

adjustment techniques can work well when one or a few records are noticeably inconsistent with their neighbors, but 

large scale biases affecting many stations could cause the local comparison methods to fail. Secondly, it is assumed 

that the reliability of a station is largely invariant over time. This will in general be false; however, the scalpel 

procedure discussed in the main text will help here. By breaking records into multiple pieces on the basis of 

metadata changes and/or empirical discontinuities, it creates the opportunity to assess the reliability of each 

fragment individually. A detailed comparison and contrast of our results with those obtained using other approaches 

that deal with inhomogeneous data will be presented elsewhere. 

 

3. Uncertainty Analysis  

We consider there to be two essential forms of quantifiable uncertainty in the Berkeley Earth averaging process: 

1. Statistical / Data-Driven Uncertainty: This is the error made in estimating the parameters 𝑏! and 𝜃 𝑡!  due 

to the fact that the data, 𝑑! 𝑡! , may not be an accurate reflection of the true temperature changes at location 𝑥!.  



2. Spatial Incompleteness Uncertainty: This is the expected error made in estimating the true land-surface 

average temperature due to the network of stations having incomplete coverage of all land areas. 

 In addition, there is “structural” or “model-design” uncertainty, which describes the error a statistical model 

makes compared to the real-world due to the design of the model. Given that it is impossible to know absolute truth, 

model limitations are generally assessed by attempting to validate the underlying assumptions that a model makes 

and comparing those assumptions to other approaches used by different models. For example, we use a site 

reliability weighting procedure to reduce the impact of anomalous trends (such as those associated with urban heat 

islands), while other models (such as those developed by GISS) attempt to remove anomalous trends by applying 

various corrections. Such differences are an important aspect of model design. In general, it is impossible to directly 

quantify structural uncertainties, and so they are not a factor in our standard uncertainty model. However, one may 

be able to identify model limitations by drawing comparisons between the results of the Berkeley Average and the 

results of other groups. Discussion of our results and comparison to those produced by other groups will be provided 

below.  

 Another technique for identifying structural uncertainty is to run the same model on multiple data sets that 

differ primarily based on factors that one suspects may give rise to unaccounted for model errors. For example, one 

can perform an analysis of rural data and compare it to an analysis of urban data to look for urbanization biases. 

Such comparisons tend to be non-trivial to execute since it is rare that one can easily construct data sets that isolate 

the experimental variables without introducing other confounding variations, such as changes in spatial coverage. 

We will not provide any such analysis of such experiments in this paper; however, additional papers in preparation 

by our group [10,11] find that objective measures of station quality and urbanization have little or no impact on our 

results over most of the available record. In other words, the averaging techniques combined with the bias 

adjustment procedures we have described appear adequate for dealing with those data quality issues to within the 

limits of the uncertainties that nonetheless exist from other sources. The one possible exception is that Wickham 

[10] observed that rural stations may slightly overestimate global land-surface warming during the most recent 

decade. The suggested effect is small and opposite in sign to what one would expect from an urban heat island bias. 

At the present time we are not incorporating any explicit uncertainty to account for such factors. 

The other analysis groups generally discuss a concept of “bias error” associated with systematic biases in the 

underlying data [12,13]. To a degree these concepts overlap with the discussion of “structural error” in that the prior 

authors tend to add extra uncertainty to account for factors such as urban heat islands and instrumental changes in 

cases when they do not directly model them. Based on graphs produced by HadCRU, such “bias error” was 

considered to be a negligible portion of total error during the critical 1950-2010 period of modern warming, but 

leads to an increase in total error up to 100% circa 1900 [12]. In the current presentation we will generally ignore 

these additional uncertainties, which will be discussed once future papers have examined the various contributing 

factors individually. 

 

4. Statistical Uncertainty – Jackknife Method  



The “jackknife” method developed by Quenouille and John Tukey [14-16] is a superior sampling method that can 

largely avoids problems associated with spatial biasing when sub sampling, and is the primary technique we apply 

for calculating statistical uncertainty. This method is traditionally used when the number of data points is too small 

to give a good result using ordinary sampling. Given the fact that temperature reconstructions use thousands of 

stations, each often having hundreds of data points, it may seem surprising that this method would prove important. 

However, despite the large set of data, there are always times and regions that are sparsely sampled.  

 The jackknife method is used in the following way. Given a set of stations, eight overlapping subpopulation 

are constructed each consisting of 7/8th of the data, with a different and independent 1/8th removed from each group. 

The data from each of these subsamples is then run through the entire Berkeley Average machinery to create 8 

records 𝜃! 𝑡!  of average global land temperature vs. time. Following Quenouille [15] and Tukey [14], we then 

create a new set of 8 “effectively independent” temperature records 𝜃!
! 𝑡!  by the jackknife formula   

 𝜃!
! 𝑡! = 8  𝜃! 𝑡! −   7  𝜃 𝑡!    (37) 

where  𝜃 𝑡! is the reconstructed temperature record from the full (100%) sample. Hence we calculate the standard 

error among the effectively independent samples: 

 

𝜎!"#$$%&'( 𝑡! =
𝜃!
! 𝑡! − 𝜃!

! 𝑡!
!

!

1!
  

(1) 

As the jackknife constructs each temperature average in its sample using a station network that is nearly complete, it 

is much more robust against spatial distribution biases than simpler sampling techniques. In addition, the number of 

samples can be easily increased without worrying that the network would become too sparse. 

 A brief comment should be made here. In computing the sub sampled temperature series, 𝜃! 𝑡! , the outlier 

and reliability adjustment factors 𝜔!,! and 𝜉!,! are recomputed for each sample. This means the process of generating 

𝜃! 𝑡!  is not entirely linear, and consequently the jackknife estimate in equation Error! Reference source not 

found. is not analytically guaranteed to be effective. However, in the present construction the deviations from 

linearity are expected to be small since most adjustment factor will be approximately 1. This observation plus the 

validation by Monte Carlo tests, appear sufficient to justify the use of the jackknife technique. One could ensure 

linearity by holding 𝜔!,! and 𝜉!,! fixed; however, this would necessarily lead to an underestimate of the statistical 

uncertainty and require a separate estimate be made of the uncertainty associated with the weighting procedures. 

 

5. Spatial Uncertainty 

Spatial uncertainty measures the amount of error that is likely to occur due to incomplete sampling of land surface 

areas. The primary technique applied in this case is empirical. The sampled area available at past times is 

superimposed over recent time periods, and one is able to calculate the error that would be incurred in measuring the 

modern temperature field given only that limited sample area. For example, if one only knew the temperature 

anomalies for Europe and North America, how much error would be incurred by using that measurement as an 

estimate of the global average temperature anomaly? The process for making this estimate involves applying the 



coverage field, 𝐹 𝑥, 𝑡! , that exists at each time and superimposing it on the nearly complete temperature anomaly 

fields 𝑊 𝑥, 𝑡!  that exist for late times, specifically 1960 ≤ 𝑡! ≤ 2010 when spatial land coverage approached 

100%.  We define the estimated average weather anomaly at time 𝑡! based on the sample field available at time 𝑡! 

to be: 

 𝜏 𝑡! , 𝑡! =
𝐹 𝑥, 𝑡! 𝑊 𝑥, 𝑡! 𝑑𝑥

𝐹 𝑥, 𝑡! 𝑑𝑥
  

(39) 

 

And then define the spatial uncertainty in 𝜃 𝑡!  as: 

 𝜎!"#$%#& 𝑡! =
𝜏 𝑡! , 𝑡! − 𝜏 𝑡!, 𝑡!

!
!"#"
!!!!"#$

1!"#"
!!!!"#$

  
(40) 

 

Ideally 𝐹 𝑥, 𝑡!  would be identically 1 during the target interval 1960 ≤ 𝑡! ≤ 2010 used as a calibration standard, 

which would imply that 𝜏 𝑡!, 𝑡! = 0, via equation (21). However, in practice these late time fields are only 90-

98% complete. As a result, 𝜎!"#$%#& 𝑡!  computed via this process will tend to slightly underestimate the uncertainty 

at late times.  

 An alternative is to use the correlated error propagation formula: 

 𝜎!"#$%#& 𝑡! ≈ 1 −
𝐹 𝑥, 𝑡!
𝐹 𝑡!

1 −
𝐹 𝑦, 𝑡!
𝐹 𝑡!

𝑉 𝑦 𝑉 𝑥 𝑅(𝑥, 𝑦)𝑑𝑥𝑑𝑦  
(41) 

 

Where 𝑅(𝑥, 𝑦) is the correlation function estimated in equation (14), 𝐹 𝑡!  is the spatial completeness factor defined 

in equation (18), and 𝑉 𝑥  is square root of the variance at 𝑥 estimated as: 

 𝐻 𝑥, 𝑡! = 𝐹 𝑥, 𝑡! if  𝐹 𝑥, 𝑡! ≥ 0.4
0 otherwise

   (42) 

 
𝑉 𝑥 =

𝐻 𝑥, 𝑡!
𝑊 𝑥, 𝑡!
𝐹 𝑥, 𝑡!

!

!

𝐻 𝑥, 𝑡!!
  

(43) 

 

The new symbol 𝐻 𝑥, 𝑡!  is introduced to focus the estimates of local variance on only those times when at least 

40% of the variance has been determined by the local data. In addition, the term 
! !,!!
! !,!!

 provides a correction to the 

magnitude of the fluctuations in 𝑊 𝑥, 𝑡!  in the presence of incomplete sampling. Recall that 𝑊 𝑥, 𝑡! → 0 as 

𝐹 𝑥, 𝑡! → 0, which reflects the fact that there can be no knowledge of the local fluctuations in the field when no 

data is available in the local neighborhood. 

 The estimate of 𝜎!"#$!"# 𝑡!  from equation (41) tends to be 30-50% smaller than the result of equation (40). 

This is probably because the linearized error propagation formula in equation (41) and the approximate correlation 

function estimated in equation (14) do not capture enough of the structure of the field for this application, and hence 

the formulation of uncertainty in equation (40) is likely to be superior. At late times both estimates of the uncertainty 

due to spatial incompleteness tend be far lower than the statistical uncertainty. In other words, at times where the 



spatial coverage of the Earth’s land surface is nearly complete, the uncertainty is dominated by statistical factors 

rather the spatial ones. 

 As noted above, the empirical uncertainty estimate of equation (40) is partially limited due to incomplete 

sampling during the target interval. To compensate for this we add a small analytical correction, determined via 

equation (41) in the computation of our final spatial uncertainty estimates at regions with incomplete sampling. This 

correction is essentially negligible except at late times. 

  



SYMBOL TABLE: Summary of the primary symbols used in the Appendix 

𝑡 the time 

𝑡!  j-th time step (i.e. month) 

𝑥	   an arbitrary position on the surface of the earth 

𝑥! 	    position of the i-th station on the surface of the earth 

𝑇(𝑥, 𝑡)  true temperature at location 𝑥 and time 𝑡 

𝑇(𝑥, 𝑡)  estimated temperature at location 𝑥 and time 𝑡 

𝑑! 𝑡!   measured temperature time series (e.g. “data”) at the i-th station and j-th time step 

𝜃 𝑡   global mean temperature time series 

𝐶 𝑥   long-term average temperature as a function of location (“climatology”) 

𝑊 𝑥, 𝑡  spatial and temporal variations in 𝑇 𝑥, 𝑡  not ascribed to 𝜃 𝑡  or 𝐶 𝑥  (e.g. the 

“weather”) 

𝜆 𝑥   temperature change as a function of latitude 

ℎ 𝑥   temperature change as a function of surface elevation 

𝐺(𝑥)  variations in 𝐶 𝑥  not ascribed to ℎ 𝑥  or 𝜆 𝑥 , i.e. the geographical anomalies in 

the mean temperature field. 

𝑏!  baseline temperature of the i-th station 

𝑆!(𝑥, 𝑡!)	    initial spatial weight of the i-th station at location 𝑥 and time 𝑡! 

𝜔!,! 	    reliability adjusted weight associated with data point 𝑑! 𝑡!  

𝜑!  relative reliability of the i-th station 

𝜉!,!  reliability adjusted weight associated with the i-th station 

𝑒	    mean local misfit between a temperature record and the interpolated field 

𝐹(𝑥, 𝑡!)	   a measure of the completeness of the sampling at location 𝑥 and time 𝑡! 

𝐹(𝑡!)	   a measure of the completeness of the sampling across all land at time 𝑡! 

𝐵!(𝑥)	    baseline spatial weighting factor for the i-th station at location 𝑥 

𝑅(𝑥! , 𝑥!)	    expected spatial correlation in temperature between locations 𝑥! and 𝑥! 

Cov(𝑥! , 𝑥!)	    covariance in temperature between locations 𝑥! and 𝑥! 

𝜎!!  variance of the temperature record at the i-th station 

Δ! 𝑡!   difference between data point 𝑑! 𝑡!   and the estimated value of the temperature 

field at the same location and time. 
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