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Abstract 
 

A new mathematical framework is presented for producing maps and large-scale 

averages of temperature changes from weather station data for the purposes of climate analysis.  

This allows one to include short and discontinuous temperature records, so that nearly all 

temperature data can be used.  The framework contains a weighting process that assesses the 

quality and consistency of a spatial network of temperature stations as an integral part of the 

averaging process.  This permits data with varying levels of quality to be used without 

compromising the accuracy of the resulting reconstructions.  Lastly, the process presented here is 

extensible to spatial networks of arbitrary density (or locally varying density) while maintaining 

the expected spatial relationships.  In this paper, this framework is applied to the Global 

Historical Climatology Network land temperature dataset to present a new global land 

temperature reconstruction from 1800 to present with error uncertainties that include many key 

effects.  In so doing, we find that the global land mean temperature has increased by 0.911 ± 

0.042 C since the 1950s (95% confidence for statistical and spatial uncertainties).  This change is 

consistent with global land-surface warming results previously reported, but with reduced 

uncertainty. 
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1. Introduction 
While there are many indicators of climate change, the long-term evolution of global 

surface temperatures is perhaps the metric that is both the easiest to understand and most closely 

linked to the quantitative predictions of climate models.  It is also backed by the largest 

collection of raw data.  According to the summary provided by the Intergovernmental Panel on 

Climate Change (IPCC), the mean global surface temperature (both land and oceans) has 

increased 0.64 ± 0.13 C from 1956 to 2005 at 95% confidence (Trenberth et al. 2007). 

During the latter half of the twentieth century weather monitoring instruments of good 

quality were widely deployed, yet the quoted uncertainty on global temperature change during 

this time period is still ± 20%.  Reducing this uncertainty is a major goal of this paper.  Longer 

records may provide more precise indicators of change; however, according to the IPCC, 

temperature increases prior to 1950 were caused by a combination of anthropogenic factors and 

natural factors (e.g. changes in solar activity), and it is only since about 1950 that man-made 

emissions have come to dominate over natural factors.  Hence constraining the post-1950 period 

is of particular importance in understanding the impact of greenhouse gases.  

The Berkeley Earth Surface Temperature project was created to help refine our estimates 

of the rate of recent global warming.  This is being approached through several parallel efforts to 

A) increase the size of the data set used to study global climate change, B) bring additional 

statistical techniques to bear on the problem that will help reduce the uncertainty in the resulting 

averages, and C) produce new analysis of systematic effects, including data selection bias, urban 

heat island effects, and the limitations of poor station siting.  The current paper focuses on 

refinements in the averaging process itself and does not introduce any new data.  The analysis 

framework described here includes a number of features to identify and handle unreliable data; 

however, discussion of specific biases such as those associated with station siting and/or urban 

heat islands will also be published separately.  

2. Averaging Methods of Prior Studies 
Presently there are three major research groups that routinely produce a global average 

time series of instrumental temperatures for the purposes of studying climate change.  These 

groups are located at the National Aeronautics and Space Administration Goddard Institute for 

Space Studies (NASA GISS), the National Oceanic and Atmospheric Administration (NOAA), 

and a collaboration of the Hadley Centre of the UK Meteorological Office with the Climate 

Research Unit of East Anglia (HadCRU).  They have developed their analysis frameworks over a 

period of about 25 years and share many common features (Hansen and Lebedeff 1987; Hansen 

et al. 1999; Hansen et al. 2010; Jones et al. 1986; Jones and Moberg 2003; Brohan et al. 2006; 

Smith and Reynolds 2005; Smith et al. 2008).  The global average time series for the three 

groups are presented in Figure 1 and their relative similarities are immediately apparent.  Each 

group combines measurements from fixed-position weather stations on land with transient ships / 

buoys in water to reconstruct changes in the global average temperature during the instrumental 

era, roughly 1850 to present.  Two of the three groups (GISS and HadCRU) treat the land-based 

and ocean problems as essentially independent reconstructions with global results only formed 

after constructing separate land and ocean time series.  The present paper will present 

improvements and innovations for the processing of the land-based measurements.  Though 

much of the work presented can be modified for use in an ocean context, we will not discuss that 

application at this time due to the added complexities and systematics involved in monitoring 

from mobile ships / buoys. 
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Figure 1.  (Upper panel) Comparison of the global annual averages of the three major research 

groups, plotted relative to the 1951-1980 average.  (Lower panel) The annual average uncertainty 

at 95% confidence reported by each of the three groups.  NASA reports an uncertainty at only 

three discrete times, shown as solid dots, while the other two groups provide continuous estimates 

of the uncertainty. 

 

In broad terms each land-based temperature analysis can be broken down into several 

overlapping pieces: A) the compilation of a basic dataset, B) the application of a quality control 

and “correction” framework to deal with erroneous, biased, and questionable data, and C) a 

process by which the resulting data is mapped and averaged to produce useful climate indices.  

The existing research groups use different but heavily overlapping data sets consisting of 

between 4400 and 7500 weather monitoring stations (Brohan et al. 2006, Hansen et al. 2010; 

Peterson and Vose 1997).  Our ongoing work to build a climate database suggests that over 

40000 weather station records have been digitized.  All three temperature analysis groups derive 

a global average time series starting from monthly average temperatures, though daily data and 

records of maximum and minimum temperatures (as well as other variables such as 

precipitation) are increasingly used in other forms of climate analysis (Easterling et al. 1997, 

Klein and Können 2003, Alexander et al. 2006, Zhang et al. 2007).  The selection of stations to 

include in climate analyses has been heavily influenced by algorithms that require the use of 

long, nearly-continuous records.  Secondarily, the algorithms often require that all or most of a 
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reference “baseline” period be represented from which a station’s “normal” temperature is 

defined.  Each group differs in how it approaches these problems and the degree of flexibility 

they have in their execution, but these requirements have served to exclude many temperature 

records shorter than 15 years from existing analyses (only 5% of NOAA records are shorter than 

15 years). 

The focus on methods that require long records may arise in part from the way previous 

authors have thought about the climate.  The World Meteorological Organization (WMO) gives 

an operational definition of climate as the average weather over a period of 30 years (Arguez and 

Vose 2011).  From this perspective, it is trivially true that individual weather stations must have 

very long records in order to perceive multi-decadal climate changes from a single site.  

However, as we will show, the focus on long record lengths is unnecessary when one can 

compare many station records with overlapping spatial and temporal coverage.  

Additionally, though the focus of existing work has been on long records, it is unclear 

that such records are ultimately more accurate for any given time interval than are shorter 

records covering the same interval.  The consistency of long records is affected by changes in 

instrumentation, station location, measurement procedures, local vegetation and many other 

factors that can introduce artificial biases in a temperature record (Folland et al. 2001, Peterson 

and Vose 1997, Brohan et al. 2006, Menne et al. 2009, Hansen et al. 2001).  A previous analysis 

of the 1218 stations in US Historical Climatology Network found that on average each record 

has one spurious shift in mean level greater than about 0.5 C for every 15-20 years of record 

(Menne et al. 2009).  Existing detection algorithms are inefficient for biases less than 0.5 C, 

suggesting that the typical length of record reliability is likely to be even shorter.  All three 

groups have developed procedures to detect and “correct” for such biases by introducing 

adjustments to individual time series.  Though procedures vary, the goal is generally to detect 

spurious changes in a record and use neighboring series to derive an appropriate adjustment. This 

process is generally known as “homogenization”, and has the effect of making the temperature 

network more spatially homogeneous but at the expense that neighboring series are no longer 

independent.  For all of the existing groups, this process of bias adjustment is a separate step 

conducted prior to constructing a global average.   

After homogenization (and other quality control steps), the existing groups place each 

“corrected” time series in its spatial context and construct a global average.  The simplest 

process, conducted by HadCRU, divides the Earth into 5° x 5° latitude-longitude grid cells and 

associates the data from each station time series with a single cell.  Because the size of the cells 

varies with latitude, the number of records per cell and weight per record is affected by this 

gridding process in a way that has nothing to do with the nature of the underlying climate.  In 

contrast, GISS uses an 8000-element equal-area grid, and associates each station time series with 

multiple grid cells by defining the grid cell average as a distance-weighted function of 

temperatures at many nearby station locations.  This captures some of the spatial structure and is 

resistant to many of the gridding artifacts that can affect HadCRU.  Lastly, NOAA has the most 

sophisticated treatment of spatial structure.  NOAA’s process, in part, decomposes an estimated 

spatial covariance matrix into a collection of empirical modes of spatial variability on a 5° x 5° 

grid.  These modes are then used to map station data onto the grid according to the degree of 

covariance expected between the weather at a station location and the weather at a grid cell 

center.  (For additional details, and explanation of how low-frequency and high-frequency modes 

are handled differently, see Smith and Reynolds 2005).  In principle, NOAA’s method should be 

the best at capturing and exploiting spatial patterns of weather variability.  However, their 
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process relies on defining spatial modes during a relatively short modern reference period (1982-

1991 for land records, Smith and Reynolds 2005), and they must assume that the patterns of 

spatial variation observed during that interval are adequately representative of the entire history.  

Further, if the goal is to understand climate change then the assumption that spatial patterns of 

weather variability are time-invariant is potentially confounding. 

In all three of these prior approaches, every record used in gridded averaging is assumed 

to be equally reliable.  More precisely, they make the assumption that their quality control and 

homogenization processes address erroneous and biased data prior to the gridding and averaging 

step in such a way that each resulting time series is deserving of equal weight.  (GISS makes a 

partial exception in that a corrective model for urban heat island biases is applied after gridding.)  

This has the effect that records subject to many bias “corrections” can be given the same weight 

in an average as a record where no bias adjustments were found to be necessary.  In such cases, 

the differences in data quality may play a role in how the uncertainty is assessed, but not in the 

construction of the global average. 

All three of the averaging processes currently being used rely on the concept of a 

“baseline” parameter to define the “normal” weather.  The baseline can either be introduced for 

each record before gridding (e.g. HadCRU) or it can be introduced after gridding and defined at 

the level of the grid cell average (e.g. NASA).  The intent of the baseline temperature parameter 

is to capture the “normal” climate at that location by reference to the average weather over some 

specific reference period (e.g. 1960-1980).  Each time series is then replaced by an “anomaly” 

time series consisting of the differences from the baseline.  This approach is motivated by the 

observation that temperatures change rapidly with latitude (about 1 C per 150 km poleward) and 

altitude (about 1 C for every 220 m of surface elevation), and that these changes are quite large 

compared to the approximately 1 C / century of global warming that one wants to investigate.  In 

effect, the baseline parameters are meant to capture most of the spatial variability between sites.  

In particular, the average of anomaly series should be much less sensitive to biases due to the 

start and stop of individual records.  Without some adjustment for such spatial variability, an 

excess of high (or low) latitude stations could erroneously pull the corresponding global average 

to lower (or higher) values.   

The use of an individual baseline parameter per station (or grid cell) makes no 

assumptions about the underlying spatial structure.  This means the maximum spatial 

information can, in principle, be removed from each record; however, several trade-offs are 

incurred in doing so.  First, the use of predefined reference intervals will limit the usability of 

stations that were not active during the corresponding period (though other compensating 

approaches are often used).  Secondly, by defining all stations to have zero anomaly during the 

reference period, one may suppress true structure in the temperature field at that time.  

Specifically, reconstructions using this method will have lower spatial variability during the 

reference interval than at other times due to the artificial constraint that all regions have the same 

mean value during the reference period. 

Lastly, after gridding the data and creating anomaly series, each existing group creates a 

large-scale average using an area-weighted average of non-empty grid cells.  HadCRU and GISS 

add an additional nuance, as they apply a post-stratification procedure prior to their final average.  

Specifically, they create averages of specific latitude bands (or hemispheres in HadCRU’s case), 

and then combine those averages to create the final global average.  This has the effect that each 

missing cell in a latitude band is essentially replaced by the average of the valid cells in the band 

before constructing the ultimate global average.  To a degree this approach also compensates for 
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the fact that certain areas (e.g. the Northern Hemisphere) tend to have much greater historical 

coverage than others.  Monte Carlo tests we conducted generally confirm that latitudinal banding 

improves the accuracy of the overall average given the techniques employed by HadCRU and 

GISS; however, we observe that such approaches are largely an indirect means of incorporating 

information about the spatial structure of the temperature field that could be modeled more 

directly. 

3. New Averaging Model 
The global average temperature is a simple descriptive statistic that aims to characterize 

the Earth.  Operationally, the global average may be defined as the integral average of the 

temperatures over the surface of the Earth as would be measured by an ideal weather station 

sampling the air at every location.  As the true Earth has neither ideal temperature stations nor 

infinitely dense spatial coverage, we can never capture the ideal global average temperature 

completely; however, we can use the data we do have to constrain its value.  

As described in the preceding section, the existing global temperature analysis groups use 

a variety of well-motivated algorithms to generate a history of global temperature change.  

However, none of their approaches would generally correspond to a statistical model in the more 

formal sense.   

Let  ( ⃑  ) be the global temperature field in space and time.  We define the 

decomposition: 

  
 ( ⃑  )   ( )   ( ⃑)   ( ⃑  ) 

 
[1] 

Uniqueness can be guaranteed by applying the constraints: 

 

 

∫  ( ⃑)  ⃑
               

  , 

 

 ∫  ( ⃑  )  ⃑
               

  , for all  , 

 

 ∫  ( ⃑  )  
               

  , for all locations  ⃑ 

 

[2] 

 Given this decomposition, we see that  ( ) corresponds to the global mean temperature 

as a function of time.   ( ⃑) captures the time-invariant spatial structure of the temperature field, 

and hence can be seen as a form of spatial “climatology”, though it differs from the normal 

definition of a climatology by a simple additive factor corresponding to the long-term average of 

 ( ).  The last term,  ( ⃑  ), is meant to capture the “weather”, i.e. those fluctuations in 

temperature over space and time that are neither part of the long-term evolution of the average 

nor part of the stable spatial structure.  In this paper, we show how it is possible to estimate the 

global temperature field by simultaneously constraining all three pieces of  ( ⃑  ) using the 

available data.  (Because we are introducing a large number of symbols, we summarize all the 

key symbols in the Appendix.)  

As our study is based solely on the use of land-based temperature data, we choose to 

restrict the spatial integrals in equation [2] to only the Earth’s land surface.  As a result, our study 

will identify  ( ) with the land temperature average only.  Rather than defining a specific base 

interval (e.g. 1950-1980) as has been common in prior work, we will show below how it is 

possible to reconcile all time periods simultaneously.  As a result, the time integral in equation 
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[2] should be understood as occurring over the full multi-century period from which data is 

available.  As a side-effect of this approach,  ( ⃑  ) will also incorporate some multi-decadal 

changes that might more typically be described as changes in climate rather than “weather”. 

We further break  ( ⃑) into a number of additional components: 

  ( ⃑)   (         ( ⃑) )   (          ( ⃑) )   ( ⃑)  [3] 

Here   depends only on the latitude of  ⃑,   depends only on the elevation of  ⃑, and  ( ⃑) 

is the “geographic anomaly”, i.e. the spatial variations in mean climatology that can’t be 

explained solely by latitude and elevation.  With appropriate models for   and   it is possible to 

explain about 95% of the variance in annual mean temperatures over the surface of the Earth in 

terms of just latitude and elevation.  The functional forms of  ,  , and  ( ⃑) will be discussed 

below. 

Consider a temperature monitoring station at location  ⃑ , we expect the temperature 

datum   (  ) to ideally correspond to  ( ⃑    )   (  )   ( ⃑ )   ( ⃑    ).  More generally, 

we assert that: 

   (  )   (  )      ( ⃑    )       [4] 

Where      is defined to be error in the i-th station and the j-th time step, and    is the 

“baseline” temperature for the i-th station necessary to minimize the error.  With this definition  

        ( ⃑ ) [5] 

is a measure of the bias at the i-th station relative to the true climatology. 

For each of the parameters and fields we have discussed we shall use the “hat” notation, 

e.g.  ̂(  ),  ̂ , to denote values that are estimated from data and to distinguish them from the true 

fields specified by definition.  Given equation [4], it is natural to consider finding fields that 

minimize expressions of the form 

      ∑(  (  )   ̂(  )   ̂   ̂( ⃑    ))
 

   

  ∑    
 

   

 
[6] 

 

Where SSD denotes the sum of square deviations and such a minimization would attempt 

to minimize the error terms.  Though appealing, [6] is ultimately misguided as   (  ) is 

distributed highly non-uniformly in both space and time, and the temperature histories at 

neighboring stations are highly correlated.  A naïve application of [6] would result in  ̂(  ) 

biased towards the most densely sampled regions of the globe. 

However, [6] does inspire our first natural set of constraint equations, namely 

  ̂  
∑ (  (  )   ̂(  )   ̂( ⃑    )) 

∑   
 

[7] 

 

Since  ̂  is specific to a single station, there is no disadvantage to simply stating that it be 

chosen to minimize the error at that specific station. 

To determine the other fields, it is instructive to consider the properties that we expect 

 ̂( ⃑    ) to have.  To begin, it should have (at least approximately) zero mean over space and 

time in accordance with equation [2].  Next, we expect that weather fluctuations should be highly 

correlated over short distances in space.  These considerations are very similar to the 

fundamental assumptions of the spatial statistical analysis technique known as Kriging (Krige 
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1951, Cressie 1990, Journel 1989).  Provided the assumptions of Kriging are met, this technique 

provides best linear unbiased estimator of the underlying spatial field. 

The simple Kriging estimate of a field,  ( ⃑), from a collection of measurements    

having positions  ⃑  is: 

  ̂( ⃑)  ∑  ( ⃑)   

 

   

 
[8] 
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  ( ⃑)

 
  ( ⃑)

)  (

  
    ( ⃑   ⃑ )

   ( ⃑   ⃑ )   
  

   ( ⃑   ⃑ )

   ( ⃑   ⃑ )
   

   ( ⃑   ⃑ )    ( ⃑   ⃑ )    
 

)

  

(
   ( ⃑  ⃑ )

 
   ( ⃑  ⃑ )

) 
[9] 

 

Where   
  is the variance at the i-th site and    ( ⃑  ⃑⃑) is the covariance between sites  ⃑ 

and  ⃑⃑.  If the covariance is known and    are sampled from an underlying population having 

zero mean, then equation [8] provides the best linear unbiased estimate of the field  ( ⃑).  In 

particular, Kriging describes a natural way to adjust the weight that each record receives in order 

to avoid overweighting densely sampled regions.  This adjustment for station density is an 

intrinsic part of the inverse covariance matrix. 

In order to take advantage of the statistical properties of simple Kriging, it is necessary 

that the data field on which the interpolation is based have zero mean.  However, this limitation 

is removed by “ordinary” Kriging where the addition of extra parameter(s) is used to transform 

the data set by removing known spatial structure (Journel 1989, Cressie 1990).  In our case, it is 

natural to identify the sampled data as: 

      (  )   ̂(  )   ̂  
[10] 

which would be expected to have zero mean per equation [4].  For the “ordinary” Kriging 

approach the ideal parameterization is found by choosing parameters  ̂ and  ̂  that minimize the 

average variance of the field, e.g. 

 Minimize:  ∫ ( ( ⃑  ))
 
  ⃑

               
 

[11] 

 

In most practical uses of Kriging it is necessary to estimate or approximate the covariance matrix 

in equation [9] based on the available data (Krige 1951, Cressie 1990, Journel 1989).  NOAA 

also requires the covariance matrix for their optimal interpolation method; they estimate it by 

first constructing a variogram during a time interval with dense temperature sampling and then 

decomposing it into empirical spatial modes that are used to model the spatial structure of the 

data (Smith and Reynolds 2005).  Their approach is nearly ideal for capturing the spatial 

structure of the data during the modern era, but has several weaknesses.  Specifically this method 

assumes that the spatial structures are adequately constrained during a brief calibration period 

and that such relationships remain stable even over an extended period of climate change. 

We present an alternative that preserves many of the natural spatial considerations 

provided by Kriging, but also shares characteristics with the local averaging approach adopted by 

GISS (Hansen et al 1999, Hansen and Lebedeff 1987).  If the variance of the underlying field 

changes slowly as a function of location, then the covariance function can be replaced with the 

correlation function,  ( ⃑  ⃑⃑), which leads to the formulation that: 
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[12] 

 

 

where       denotes the collection of stations active at time   , and thus 

  ̂( ⃑   )  ∑   
( ⃑   )(   

(  )   ̂(  )   ̂  
)

 

   

 
[13] 

The Kriging formulation is most efficient at capturing fluctuations that have a scale 

length comparable to the correlation length; however, it also permits the user to find finer 

structure if more densely positioned data is provided.  In particular, in the limit of infinitely 

dense data, the Kriging estimate of the field will necessarily match the field exactly.  This is in 

direct contrast to the GISS and HadCRU averaging approaches that will always smooth over fine 

structure. 

A further modification is made by assuming that  ( ⃑  ⃑⃑)   ( ), where   | ⃑   ⃑⃑| 

denotes the distance between  ⃑ and  ⃑⃑.  This allows us to parameterize the correlation field as a 

simple function of one variable, though it admittedly neglects differences in correlation that 

might be related to factors such as latitude, altitude, and local vegetation, etc.  The correlation 

function is parameterized using: 

  ( )    (                )    
[14] 

This is compared to a reference data set based on randomly selecting 500,000 pairs of 

stations, and measuring the correlation of their non-seasonal temperature fluctuations provided 

they have at least ten years of overlapping data.  The resulting data set and fit are presented in 

Figure 2.  Pair selection was accomplished by choosing random locations on the globe and 

locating the nearest temperature records, subject to a requirement that it be no more than 100 km 

from the chosen random location.  The small constant term   measures the correlation over the 

very largest distance scale; however, for the purposes of equation [12] it is computationally 

advantageous to set     which we did while scaling the rest of equation [14] by   (   ) to 

compensate near    .  This allows us to treat stations at distances greater than ~4000 km as 

completely uncorrelated, which greatly simplifying the matrix inversion in equation [12] since a 

majority of the matrix elements are now zeros.  Figure 2 shows that the correlation structure is 

substantial out to a distance of ~1000 km, and non-trivial to ~2000 km from each site. 
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Figure 2.  Mean correlation versus distance curve constructed from 500,000 pair-wise 

comparisons of station temperature records.  Each station pair was selected at random, and the 

measured correlation was calculated after removing seasonality and with the requirement that 

they have at least 10 years of overlapping data.  Red, green, and yellow curves show a moving 

range corresponding to the inner 80, 50, and 20% of data respectively.  The black curve 

corresponds to the modeled correlation vs. distance reported in the text.  This correlation versus 

distance model is used as the foundation of the Kriging process used in the Berkeley Average. 

 

Based on the data, the best fit values in equation [14] were   = 0.1276,   = 2.4541 x 10
-4

 / km,   

=  5.3881 x 10
-7

 / km
2
,    -2.7452 x 10

-11
 / km

3
,   = 8.3007 x 10

-14 
/ km

4
 and   = 0.0272.  These 

were the values we used in the Berkeley Earth temperature reconstruction method. 

In Figure 3 we show similar fits using station pairs restricted by either latitude or 

longitude.  In the case of longitude, we divide the Earth into 8 longitude bands and find that the 

correlation structure is very similar across each.  The largest deviation occurs in the band 

centered at 23 W with reduced correlation at short distances.  This band is one of several that 

include relatively few temperature stations as it spans much of the Atlantic Ocean, and so this 

deviation might be primarily a statistical fluctuation.  The deviations observed in Figure 3 for 

latitude bands are more meaningful however.  We note that latitude bands show decreasing 

short-range correlation as one approaches the equator and a corresponding increase in long-range 

correlation.  Both of these effects are consistent with decreased weather variability in most 
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tropical areas.  These variations, though non-trivial, are relatively modest for most regions.  For 

the current presentation we shall restrict ourselves to the simple correlation function given by 

equation [14], though further refinements of the correlation function are likely to be a topic of 

future research. 

 

 

 

 
Figure 3. Correlation versus distance fits, similar to Figure 2, but using only stations selected 

from portions of the Earth.  The Earth is divided into eight longitudinal slices (Left) or seven 

latitudinal slices (Right), with the slice centered at the latitude or longitude appearing in the 

legend.  In each panel, the global average curve (Figure 2) is plotted in black.  All eight 

longitudinal slices are found to be similar to the global average.  For the latitudinal slices, we find 

that the correlation is systematically reduced at low latitudes.  This feature is discussed in the text.  

 

We note that the correlation in the limit of zero distance,  ( )        , has a natural and 

important physical interpretation.  It is an estimate of the correlation that one expects to see 

between two typical weather monitors placed at the same location.  By extension, if we assume 

such stations would report the same temperature except that each is subject to random and 

uncorrelated error, then it follows that    ( )        of the non-seasonal variation in the 

typical station record is caused by measurement noise that is unrelated to the variation in the 

underlying temperature field.  Since the average root-mean-square non-seasonal variability is 

~2.0 C, it follows that an estimate of the short-term instrumental noise for the typical month at a 

typical station is ~0.47 C at 95% confidence.  This estimate is much larger than the 

approximately 0.06 C typically used for the random monthly measurement error (Folland et al. 

2001).  Our correlation analysis suggests that such estimates may understate the amount of 

random noise introduced by local and instrumental effects.  However, we note that the same 

authors assign an uncertainty of 0.8 C to the homogenization process they use to remove longer-

term biases.  We suspect that the difficulty they associate with homogenization is partially 

caused by the same short-term noise that we observe.  However, our correlation estimate would 

not generally include long-term biases that cause a station to be persistently too hot or too cold, 

and so the estimates are not entirely comparable.  The impact of short-term local noise on the 

ultimate temperature reconstruction can be reduced in regions where stations are densely located 

and thus provide overlapping coverage.  The simple correlation function described above would 

imply that each temperature station captures 
∬ ( ⃑)   ⃑

∬   ⃑
       of the Earth’s temperature field; 
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equivalently, 180 ideally distributed weather stations would be sufficient to capture nearly all of 

the expected structure in the Earth’s monthly mean anomaly field.  This is similar to the estimate 

of 110 to 180 stations provided by Jones 1994.  We note that the estimate of 180 stations 

includes the effect of measurement noise.  Removing this consideration, we would find that the 

underlying monthly mean temperature field has approximately 115 independent degrees of 

freedom.  In practice though, quality control and bias correction procedures will substantially 

increase the number of records required. 

The new Kriging coefficients   ( ⃑   ) defined by equation [12] also have several natural 

interpretations.  First, the average of   ( ⃑   ) over land: 

 

  
∫  ( ⃑   )   ⃑

∫     ⃑
   

[15] 

 

 

can be interpreted as the total weight in the global land-surface average attributed to the i-th 

station at time   .  Second, the use of correlation rather than covariance in our construction, gives 

rise to a natural interpretation of the sum of   ( ⃑   ) over all stations.  Because Kriging is linear 

and our construction of R is positive definite, it follows that: 

 

   ( ⃑   )  ∑  ( ⃑   )

 

   
[16] 

 

where  ( ⃑   ) has the qualitative interpretation as the fraction of the  ( ⃑   ) field that has been 

effectively constrained by the data.  The above is true even though individual terms   ( ⃑   ) may 

in general be negative.  Since the true temperature anomaly is  
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We see that in the limit  ( ⃑   )   , the temperature estimate at  ⃑ depends only on the local 

data   (  ), while in the limit  ( ⃑   )    the temperature field at  ⃑ is estimated to have the 

same value as the global average of the data.  For diagnostic purposes it is also useful to define: 
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which provides a measure of total field completeness as a function of time. 

 Under the ordinary Kriging formulation, we would expect to find the parameters  ̂(  ) 

and  ̂  by minimizing a quality of fit metric: 

 

 
∫ ̂( ⃑   )

 
  ⃑ [19] 
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Minimizing this quantity can be shown to be equivalent to satisfying at all times the set of 

equations given by 

 
∫ ̂( ⃑   )  ( ⃑   )   ⃑    [20] 

 

This is nearly identical to the constraint in equation [2] that: 

 

 
∫ ( ⃑   )   ⃑    [21] 

 

This latter criterion is identical to equation [20] in both the limit  ( ⃑   )   , indicating 

dense sampling, and the limit  ( ⃑   )   , indicating an absence of sampling since  ( ⃑   ) 

also becomes 0 in this limit.  We choose to accept equation [2] as our fundamental constraint 

equation rather than equation [20].  This implies that our solution is only an approximation to the 

ordinary Kriging solution in the spatial mode; however, making this approximation confers 

several advantages.  First, it ensures that  ̂(  ) and  ̂  retain their natural physical interpretation.  

Second, computational advantages are provided by isolating the   ( ⃑   ) so that the integrals 

might be performed independently for each station. 

Given equations [7] and [13] imposing criterion [2] actually constrains the global average 

temperature  ̂(  ) nearly completely.  Though not immediately obvious, constraints [7], [13] and 

[21] leave a single unaccounted for degree of freedom.  Specifically, one can adjust all  ̂(  ) by 

any arbitrary additive factor provided one makes a compensating adjustment to all  ̂ .  This last 

degree of freedom can be removed by specifying the climatology  ( ⃑), applying the zero mean 

criterion from equation [2] and assuming that the local anomaly distribution (equation [5]) will 

also have mean 0.  This implies:  

 

  ( ⃑ )   ( ⃑ )   ( ⃑ )   ( ⃑ )    ̂  [22] 

 We parameterize  ( ⃑) as a simple quadratic function of elevation and parameterize  ( ⃑) 

as a piece-wise linear function of the absolute value of latitude with 11 knots equally spaced in 

the cosine of latitude.  For  ( ⃑) we reuse the Kriging formulation developed above, with a 

modification 
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where    is the number of months of data for the i-th station.  The modified diagonal terms on 

the correlation matrix are the natural effect of treating the value  ̂  as if it were entered into the 

Kriging process         , which appropriately gives greater weight to values of  ̂  that are more 
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precisely constrained.  As noted previously, the factors associated with latitude and altitude 

collectively capture ~95% of the variance in the stationary climatology field.  Most of the 

remaining structure is driven by dynamical processes (e.g. ocean and atmospheric circulation) or 

by boundary conditions such as the nearness to an ocean. 

This final normalization described here has the effect of placing the  ̂(  ) on an absolute 

scale such that these values are a true measure of mean temperature and not merely a measure of 

a temperature anomaly.  In practice, we find that the normalization to an absolute scale is 

considerably more uncertain than the determination of relative changes in temperature.  This 

occurs due to the large range of variations in  ̂  from nearly 30 C at the tropics to about -50 C in 

Antarctica.  This large variability makes it relatively difficult to measure the spatial average 

temperature, and as a result there is more measurement uncertainty in the estimate of the absolute 

temperature normalization than there is in the measurement of changes over time. 

The preceding outline explains the core of our analysis process.  However, we make other 

modifications to address issues of bias correction and station reliability.  Whereas other groups 

use a procedure they refer to as homogenization, our approach is different; we call it the scalpel. 

4. Homogenization and the Scalpel  
Temperature time series may be subject to many measurement artifacts and microclimate 

effects (Folland et al. 2001, Peterson and Vose 1997, Brohan et al. 2006, Menne et al. 2009, 

Hansen et al. 2001).  Measurement biases often manifest as abrupt discontinuities arising from 

changes in instrumentation, site location, nearby environmental changes (e.g. construction), and 

similar artifacts.  They can also derive from gradual changes in instrument quality or calibration, 

for example, fouling of a station due to accumulated dirt or leaves can change the station’s 

thermal or air flow characteristics.  In addition to measurement problems, even an accurately 

recorded temperature history may not provide a useful depiction of regional scale temperature 

changes due to microclimate effects at the station site that are not representative of large-scale 

climate patterns.  The most widely discussed microclimate effect is the potential for “urban heat 

islands” to cause spuriously large temperature trends at sites in regions that have undergone 

urban development (Hansen et al. 2010, Oke 1982, Jones et al. 1990).  At noted in the prior 

section, we estimate that on average 12% of the non-seasonal variance in a typical monthly 

temperature time series is caused by short-term local noise of one kind or another.  All of the 

existing temperature analysis groups use processes designed to detect various discontinuities in a 

temperature time series and “correct” them by introducing adjustments that make the 

presumptively biased time series look more like neighboring time series and/or regional averages 

(Menne and Williams 2009, Jones and Moberg 2003, Hansen et al. 1999).  This data correction 

process is called “homogenization.” 

Rather than correcting data, we rely on a philosophically different approach.  Our method 

has two components: 1) Break time series into independent fragments at times when there is 

evidence of abrupt discontinuities, and 2) Adjust the weights within the fitting equations to 

account for differences in reliability.  The first step, cutting records at times of apparent 

discontinuities, is a natural extension of our fitting procedure that determines the relative offsets 

between stations, encapsulated by  ̂ , as an intrinsic part of our analysis.  We call this cutting 

procedure the scalpel. Provided that we can identify appropriate breakpoints, the necessary 

adjustment will be made automatically as part of the fitting process.  We are able to use the 

scalpel approach because our analysis method can use very short records, whereas the methods 



 16 

employed by other groups generally require their time series be long enough to contain a 

reference interval. 

The addition of breakpoints will generally improve the quality of fit provided they occur 

at times of actual discontinuities in the record.  The addition of unnecessary breakpoints (i.e. 

adding breaks at time points which lack any real discontinuity), should be trend neutral in the fit 

as both halves of the record would then be expected to tend towards the same  ̂  value; however, 

unnecessary breakpoints can amplify noise and increase the resulting uncertainty in the record 

(discussed below).   

There are in general two kinds of evidence that can lead to an expectation of a 

discontinuity in the data.  The first is “metadata”, such as documented station moves or 

instrumentation changes.  For the current paper, the only “metadata” cut we use is based on gaps 

in the record; if a station failed to report temperature data for a year or more, then we consider 

that gap as evidence of a change in station conditions and break the time series into separate 

records at either side of the gap.  In the future, we will extend the use of the scalpel to processes 

such as station moves and instrumentation changes; however, the analysis presented below is 

based on the GHCN dataset which does not provide the necessary metadata to make those cuts.  

The second kind of evidence requiring a breakpoint is an apparent shift in the statistical 

properties of the data itself (e.g. mean, variance) when compared to neighboring time series that 

are expected to be highly correlated. When such a shift is detected, we can divide the data at that 

time, making what we call an “empirical breakpoint”.  The detection of empirical breakpoints is 

a well-developed field in statistics (Page 1955, Tsay 1991, Hinkley 1971, Davis 2006), though 

relatively little work has been done to develop the case where spatially correlated data are widely 

available.  As a result, the existing groups have each developed their own approach to empirical 

change point detection (Menne and Williams 2009; Jones and Moberg 2003, Hansen et al. 1999).  

In the present paper, we use a simple empirical criterion that is not intended to be a complete 

study of the issue.  Like prior work, the present criterion must be applied prior to any averaging.  

In principle, change point detection could be incorporated into an iterative averaging process that 

uses the immediately preceding average to help determine a set of breakpoints for the next 

iteration; however, no such work has been done at present. For the present paper, we follow 

NOAA in considering the neighborhood of each station and identifying the most highly 

correlated adjacent stations.  A local reference series is then constructed by a weighted average 

of the neighboring stations.  This is compared to the station’s records, and a breakpoint is 

introduced at places where there is an abrupt shift in mean larger than 4 standard deviations.  

This empirical technique results in approximately 1 cut for every 12.2 years of record, which is 

somewhat more than the changepoint occurrence rate of one every 15-20 years reported by 

Menne et al. 2009.  Future work will explore alternative cut criteria, but the present effort is 

meant merely to incorporate the most obvious change points and show how our averaging 

technique can incorporate the discontinuity adjustment process in a natural way. 

5. Outlier Weighting 
The next potential problem to consider is point outliers, i.e. single data points that vary 

greatly from the expected value as determined by the local average. Removal of outliers is done 

by defining the difference between a temperature stations report and the expected value at that 

same site: 
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where  ̂ ( ⃑    ) approximates the effect of constructing the  ̂( ⃑    ) field without the 

influence of the i-th station: 

 

 ̂ ( ⃑    )   ̂( ⃑    )    ( ⃑    )(  (  )   ̂   ̂(  )) 

 
[26] 

The scale of the typical measurement error (   0.55 C) is estimated from: 
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The outlier weight adjustment is defined as 
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Equation [28] specifies a downweighting term to be applied for point outliers that are 

more than      from the modeled expectation.  This outlier weighting is used to define a 

modified expression for  ̂   
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and is also incorporated into the site weighting discussed below. 

This choice of target threshold,     , is partly arbitrary but was selected with the 

expectation that most of the measured data should be unaffected.  If the underlying data 

fluctuations were normally distributed, we would expect this process to crop 1.25% of the data.  

In practice, we observe that the data fluctuation distribution tends to be intermediate between a 

normal distribution and a Laplace distribution.  In the Laplace limit, we would expect to crop 

2.9% of the data, so the actual exclusion rate can be expected to be intermediate between 1.25% 

and 2.9% for the typical station record.   

Of course, the goal is not to remove legitimate data, but rather to limit the impact of 

erroneous outliers.  In defining equation [28], we adjusted the weight of outliers to a fixed target, 

    , rather than to simply downweight them to zero.  This helps to ensure numerical stability.   

6. Reliability Weighting 
In addition to point outliers, climate records often vary for other reasons that can affect an 

individual record’s reliability at the level of long-term trends.  For example, we also need to 

consider the possibility of gradual biases that lead to spurious trends.  In this case we assess the 

overall “reliability” of the record by measuring each record’s average level of agreement with the 

expected field  ̂( ⃑  ) at the same location. 

For each station we compute a measure of the quality of fit: 
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The “min” is used to avoid giving too great a weight to the most extreme outliers when 

judging the reliability of the series.  The station weight is then defined as: 

 

 
   

   

     
  

[31] 

 

Due to the limits on outliers from the previous section, the station weight has a range 

between 1/13 and 2, effectively allowing a “perfect” station record to receive up to 26 times the 

weight of a “terrible” record.  This functional form was chosen for the station weight due to 

several desirable qualities.  The typical record is expected to have a weight near 1, with poor 

records being more severely downweighted than good records are enhanced.  Using a 

relationship that limits the potential upweighting of good records was found to be necessary in 

order to ensure efficient convergence and numerical stability.  A number of alternative weighting 

and functional forms with similar properties were also considered, but we found that the 

construction of global temperature time series were not very sensitive to the details of how the 

downweighting of inconsistent records was handled. 

After defining the station weight, we need to incorporate this information into the spatial 

averaging process, e.g. equation [13], by adjusting the associated Kriging coefficients.  Ideally, 

one might use the station weights to modify the correlation matrix (equation [12]) and recompute 

the Kriging coefficients.  However, it is unclear what form of modification would be appropriate, 

and frequent recomputation of the required matrix inverses would be computationally 

impractical.  So, we opted for a more direct approach to the reweighting of the Kriging solution.   

We define updated spatial averaging coefficients: 
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This expression is motivated by the representation of the true anomaly in equation [17] 

as: 
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and the desire to leave the expected variance of the right hand side unchanged after reweighting.  

Because  ( ⃑   )  ∑   ( ⃑   )  it follows that   
 ( ⃑   ) is equal to   ( ⃑   ) if all the station 

weights are set to 1.  The (   ( ⃑   )) term in the denominator can be understood as 

measuring the influence of the global mean field, rather than the local data, in the construction of 

the local average temperature estimate.  The omission of this term in equation [32] would lead to 

a weighting scheme that is numerically unstable. 

It is important to note that equation [32] merely says that the local weather average 

 ̂( ⃑   ) should give proportionally greater weight to more reliable records.  However, if all of 

the records in a given region have a similar value of   , then they will all receive about the same 
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weight regardless of the actual numerical value of   .  Specifically, we note    does not directly 

influence  ̂(  ).  This behavior is important as some regions of the Earth, such as Siberia, tend to 

have broadly lower values of    due to the high variability of local weather conditions.  

However, as long as all of the records in a region have similar values for   , then the individual 

stations will still receive equal and appropriate weight in the global average.  This avoids a 

potential problem that high variability regions could be underrepresented in the construction the 

global time series  ̂(  ). 

As noted above, the formulation of equation [32] is not necessarily ideal compared to 

processes that could adjust the correlation matrix directly, and hence this approach should be 

considered as an approximate approach for incorporating station reliability differences.  In 

particular, the range bounds shown for   ( ⃑   ), such as that given for equation [16], will not 

necessarily hold for   
 ( ⃑   ). 

Equation [32] leads to a natural expression for the outlier and reliability adjusted weather 

field 
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 ̂ 
 
 and  ̂ ( ⃑   ) are now used to replace the original values in the execution of the model.  In 

order to ensure robustness, this process of determining site and outlier weights is repeated many 

times until the parameter values stabilize.  We find that we typically require 10 to 30 iterations to 

satisfy our convergence criteria. 

Implicit in the discussion of station reliability considerations are several assumptions.  

First, we assume that the local weather function constructed from many station records, 

 ̂( ⃑   ), will be a better estimate of the local temperature than any individual record could be.  

This assumption is generally characteristic of all averaging techniques; however, we can’t rule 

out the possibility of large-scale systematic biases.  Our reliability adjustment techniques can 

work well when one or a few records are noticeably inconsistent with their neighbors, but large 

scale biases affecting many stations could cause such comparative estimates to fail.  Second, we 

assume that the reliability of a station is largely invariant over time.  This will in general be false; 

however, the scalpel procedure discussed previously will help us here.  By breaking records into 

multiple pieces on the basis of metadata changes and/or empirical discontinuities, we then also 

have the opportunity to assess the reliability of each fragment individually.  A detailed 

comparison and contrast of our results with those obtained using other approaches to deal with 

inhomogeneous data will be presented elsewhere. 

7. Uncertainty Analysis  
We consider there to be two essential forms of quantifiable uncertainty in the Berkeley 

Earth averaging process: 

1. Statistical / Data-Driven Uncertainty: This is the error made in estimating the 

parameters  ̂  and  ̂(  ) due to the fact that the data,   (  ), may not be an 

accurate reflection of the true temperature changes at location  ⃑ .  

2. Spatial Incompleteness Uncertainty: This is the expected error made in estimating 

the true land-surface average temperature due to the network of stations having 

incomplete coverage of all land areas. 
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In addition, there is “structural” or “model-design” uncertainty, which describes the error 

a statistical model makes compared to the real-world due to the design of the model.  Given that 

it is impossible to know absolute truth, model limitations are generally assessed by attempting to 

validate the underlying assumptions that a model makes and comparing those assumptions to 

other approaches used by different models.  For example, we use a site reliability weighting 

procedure to reduce the impact of anomalous trends (such as those associated with urban heat 

islands), while other models (such as those developed by GISS) attempt to remove anomalous 

trends by applying various corrections.  Such differences are an important aspect of model 

design.  In general, it is impossible to directly quantify structural uncertainties, and so they are 

not a factor in our standard uncertainty model.  However, one may be able to identify model 

limitations by drawing comparisons between the results of the Berkeley Average and the results 

of other groups.  Discussion of our results and comparison to those produced by other groups 

will be provided below.   

Another technique for identifying structural uncertainty is to run the same model on 

multiple data sets that differ primarily based on factors that one suspects may give rise to 

unaccounted for model errors.  For example, one can perform an analysis of rural data and 

compare it to an analysis of urban data to look for urbanization biases.  Such comparisons tend to 

be non-trivial since it is rare that one can construct data sets that isolate the experimental 

variables without introducing other confounding variations.  We will not provide any such 

analysis of such experiments in this paper; however, additional papers submitted by our group 

(Wickham et al. submitted; Muller et al. submitted) find that objective measures of station 

quality and urbanization do not have with a statistically significant impact on our results over 

most of the available record.  In other words, the averaging techniques combined with the bias 

adjustment procedures we have described appear adequate for dealing with those data quality 

issues to within the limits of the uncertainties that nonetheless exist from other sources.  The one 

possible exception is that Wickham et al. observed that rural stations may slightly overestimate 

global land-surface warming during the most recent decade.  The suggested effect is small and 

opposite in sign to what one would expect from an urban heat island bias.  At the present time we 

are not incorporating any explicit uncertainty to account for such factors, though the data driven 

uncertainty will implicitly capture the effects of variations in data behavior across the field. 

The other analysis groups generally discuss a concept of “bias error” associated with 

systematic biases in the underlying data (e.g. Brohan et al. 2006; Smith and Reynolds 2005).  To 

a degree these concepts overlap with the discussion of “structural error” in that the prior authors 

tend to add extra uncertainty to account for factors such as urban heat islands and instrumental 

changes in cases when they do not directly model them.  Based on graphs produced by HadCRU, 

such “bias error” was considered to be a negligible portion of total error during the critical 1950-

2010 period of modern warming, but leads to an increase in total error up to 100% circa 1900 

(Brohan et al. 2006).  In the current presentation we will generally ignore these additional 

uncertainties which will be discussed once future papers have examined the various contributing 

factors individually. 

8. Statistical Uncertainty – Overview 
Statistical uncertainty is a reflection of the errors introduced into the determination of 

model parameters due to the fact that the basic data,   (  ), may not be an accurate reflection of 

the true temperature history.  In order to place uncertainties on the global mean temperature time 
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series  ̂(  ), we apply two approaches, a systematic “sampling” method, and a “jackknife” 

method (Miller 1974, Tukey 1958, Quenouille 1949).   

These approaches are both different from the approaches that have been commonly used 

in the past.  Prior groups generally assess uncertainly from the bottom-up by assigning 

uncertainty to the initial data and all of the intermediate processing steps.  This is a complicated 

process due to the possibility of correlated errors and the risk that those uncertainties may 

interact in unexpected ways.  Further, one commonly applies the same amount of data 

uncertainty to all records, even though we would expect that some records are more accurate 

than others. 

As an alternative, we approach the statistical uncertainty quantification from a top-down 

direction.  At its core, this means measuring how much our result would change if there were 

variations in the amount of data available.  By performing the entire analysis chain with small 

variations in the amount of data available we can assess the impact of data noise in a way that 

bypasses concerns over correlated error and varying record uncertainty.  For a complex analysis 

system this will generally provide a more accurate measure of the statistical uncertainty, though 

there are some additional nuances. 

9. Statistical Uncertainty – Sampling Method  
The sampling method we apply relies on subsampling the station network, recomputing 

the temperature time series, and examining the variance in the results across the different 

samples.  In the implementation we used for the current paper, each station is randomly assigned 

to one of five groups.  Each of these groups can be expected to have similar, but somewhat 

diminished, spatial coverage compared to the complete sample.  For each group of stations we 

reapply the averaging process.  This leads to a set of new temperature time series  ̂ (  ), where 

the n index denotes the subsample number.  As each of these new time series is created from a 

completely independent station network, we are justified in treating their results as statistically 

independent. 

For each subsampled network, we compute the mean temperature for an arbitrary period, 

e.g.  Jan 1950 to Dec 2000, and subtract this from the data; this gives us five subsampled records 

that have the same temperature “anomaly.”  We do this to separate out the uncertainty associated 

with relative changes in the global land-surface time series from the larger uncertainty associated 

with the estimation of the Earth’s absolute mean temperature.  We then estimate the statistical 

uncertainty of  ̂(  ) as the standard error in the mean of the subsampled values, namely  
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where 〈 ̂ (  )〉 denotes the mean value.  In general, the denominator will be 5 at times where all 

five subsamples report a value.  However, since the different subsamples may have somewhat 

different time coverage, the number of records reported at early times might be different.  We 

require at least three subsamples report a value in order for an uncertainty to be reported.  

Examples of subsampled temperature series and the resulting uncertainty will be provided with 

the discussion of GHCN results. 
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The sampling value could be further refined.  One method would be to repeat this entire 

process of creating five subsamples through multiple iterations and average the results. 

Unfortunately, though conceptually simple and computationally efficient, the sampling 

method suffers from a flaw that leads to a systematic underestimation of the statistical 

uncertainty in our context.  In forming each subsampled network, 80% of stations must be 

eliminated.  This increases the effect of spatial uncertainty associated with each of these 

subsamples.  Further, due to the highly heterogeneous history of temperature sampling, the 

newly unsampled regions in each subnetwork will tend to overlap to a substantial degree leading 

to correlated errors in the uncertainty calculation.  Based on a variety of Monte Carlo 

experiments, we concluded that the sampling estimates of uncertainty tend to understate the true 

error by between 10 and 100% depending on the distribution of the temperature-monitoring 

network at the time. 

10. Statistical Uncertainty – Jackknife Method  
The “jackknife”, a method developed by Quenoille and John Tukey, is our primary 

method for determining statistical uncertainty (Tukey 1958, Quenoille 1949, Miller 1974).  It is a 

special modification of the sampling approach, finding its traditional use when the number of 

data points is too small to give a good result using ordinary sampling.  Given the fact that we 

have many thousands of stations in our records, each with typically hundreds of data points, it 

was surprising to us that this method would prove so important.  But despite our large set of data, 

there are time and places that are sparsely sampled.  As noted above, the presence of this sparse 

sampling tends to cause the sampling technique to underestimate the statistical uncertainty. 

We use the jackknife method in the following way.  Given a set of stations (7280, when 

using the GHCN compilation) we construct 8 station groups, each consisting of 7/8 of the data, 

with a different 1/8 removed from each group.  The data from each of these data samples is then 

run through the entire Berkeley Average machinery to create 8 records  ̂ (  ) of average global 

land temperature vs. time.  Following Quenouille and Tukey, we then create a new set of 8 

“effectively independent” temperature records  ̂ 
 (  ) by the jackknife formula   

  

  ̂ 
 (  )     ̂ (  )      ̂(  ) [36] 

where  ̂(  ) is the reconstructed temperature record from the full (100%) sample.  Hence we 

calculate the standard error among the effectively independent samples: 
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We indeed found that the typical statistical uncertainties estimated from the jackknife were, in 

general, larger than those estimated from the sampling method.  As the jackknife constructs its 

temperature average using a station network that is nearly complete, it is more robust against 

spatial distribution effects.  In addition, we can more easily increase the number of samples 

without worrying that the network would become too sparse (as could happen if one increased 

the number of divisions in the sampling approach). 
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We studied the relative reliability of the sampling and jackknife methods using over 

10,000 Monte Carlo simulations.  For each of these simulations, we created a toy temperature 

model of the “Earth” consisting of 100 independent climate regions.  We simulated data for each 

region, using a distribution function that was chosen to mimic the distribution of the real data; so, 

for example, some regions had many sites, but some had only 1 or 2.  This model verified that 

sparse regions caused problems for the sampling method.   In these tests we found that the 

jackknife method gave a consistently accurate measure of the true error (known since in the 

Monte Carlo we knew the “truth”) while the sampling would consistently underestimate the true 

error.   

When we discuss the results for our reanalysis of the GHCN data we will show the error 

uncertainties calculated both ways.  The jackknife uncertainties are larger than those computed 

via sampling, but based on our Monte Carlo tests, we believe them to be more accurate. 

11. Spatial Uncertainty 
Spatial uncertainty measures the amount of error that is likely to occur in our averages 

due to incomplete sampling of land surface areas.  Our primary technique in this case is 

empirical.  We look at the sampled area available at past times, superimpose it on the modern 

day, and ask how much error would be incurred in measuring the modern temperature field given 

only the limited sample area available in the past.  For example, if one only knew the 

temperature anomalies for Europe and North America, how much error would be incurred by 

using that measurement as an estimate of the global average temperature anomaly?  The process 

for making this estimate involves applying the coverage field,  ( ⃑   ), that exists at each time 

and superimposing it on the nearly complete temperature anomaly fields  ̂( ⃑   ) that exist for 

late times, specifically              when spatial land coverage approached 100%.  We 

define the estimated average weather anomaly at time    based on the sample field available at 

time    to be: 

  (     )  
∫ ( ⃑   ) ̂( ⃑   )  ⃑

∫  ( ⃑   )  ⃑
 

[38] 

 

 

and then define the spatial uncertainty in  ̂(  ) as: 
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∑ ( (     )   (     ))

 
    
       

∑      
       

 

[39] 

 

 

Ideally  ( ⃑   ) would be identically 1 during the target interval              used 

as a calibration standard, which would imply that  (     )   , via equation [21].  However, in 

practice these late time fields are only 90-98% complete.  As a result,         (  ) computed via 

this process will tend to slightly underestimate the uncertainty at late times. 

An alternative is to use the correlated error propagation formula: 
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where  ( ⃑  ⃑) is the correlation function estimated in equation [14],      (  ) is the spatial 

completeness factor defined in equation [18], and  ̂( ⃑) is square root of the variance at  ⃑ 

estimated as: 
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The new symbol  ( ⃑   ) is introduced to focus the estimates of local variance on only 

those times when at least 40% of the variance has been determined by the local data.  In addition, 

the term 
 ̂( ⃑   )

 ( ⃑   )
 provides a correction to the magnitude of the fluctuations in  ̂( ⃑   ) in the 

presence of incomplete sampling.  Recall that  ̂( ⃑   )    as  ( ⃑   )   , which reflects the 

fact that there can be no knowledge of the local fluctuations in the field when no data is available 

in the local neighborhood. 

The estimate of         (  ) from equation [39] tends to be 30-50% larger than the result 

of equation [40] at early times (e.g. pre-1940).  We believe this is because the linearized error 

propagation formula in equation [40] and the approximate correlation function estimated in 

equation [14] don’t capture enough of the structure of the field, and that the formulation in 

equation [39] is likely to be superior at early times.  At late times the two results are nearly 

identical; however, both estimates of the uncertainty due to spatial incompleteness at late times 

tend be far lower than the statistical uncertainty at late times.  In other words, at times where the 

spatial coverage of the Earth’s land surface is nearly complete, the uncertainty is dominated by 

statistical factors rather the spatial ones. 

As noted above, the empirical uncertainty estimate of equation [39] is partially limited 

due to incomplete sampling during the target interval.  To compensate for this we add a small 

analytical correction, determined via equation [40] in the computation of our final spatial 

uncertainty estimates at regions with incomplete sampling.  This correction is essentially 

negligible except at late times. 

12. GHCN Results 
The analysis method described in this paper has been applied to the 7280 weather stations 

in the Global Historical Climatology Network (GHCN) monthly average temperature data set 

developed by Peterson and Vose 1997; Menne and Williams 2009.  We used the non-

homogenized data set, with none of the NOAA corrections for inhomogeneities included; rather, 

we applied our scalpel method to break records at any documented discontinuity.  We used the 

empirical scalpel method described earlier to detect undocumented changes; using this, the 

original 7,280 data records were broken into 47,282 record fragments.  Of the 30,590 cuts, 5218 

were based on gaps in record continuity longer than 1 year and the rest were found by our 



 25 

empirical method. We also found a small number of nonsense data points in the raw data, for 

example, values exceeding 70 C, records filled with zeros, or other repeated strings of data; these 

were eliminated by a pre-filtering process.  In total, 0.8% of the data points were eliminated for 

such reasons.  The NOAA analysis process uses their own pre-filtering in their homogenization 

and averaging processes, but we chose to handle them directly due to our preference for using 

the raw GHCN data with no prior corrections.  A further 0.2% of data was eliminated because 

after cutting and filtering the resulting record was either too short to process (minimum length ≥6 

months) or it occurred at a time with fewer than 5 total stations active. 

It is worth making a special point of noting that after cutting and processing, the median 

length of a temperature time series processed by the Berkeley Average was only 7.1 years.  

Further, the inner 50% range for station record lengths was 2.7 to 12.8 years.  As already stated, 

our climate change analysis system is designed to be very tolerant of short and discontinuous 

records which will allow us to work with a wider variety of data than is conventionally 

employed. 

Figure 4 shows the station locations used by GHCN, the number of active stations vs. 

time, and the land area sampled vs. time (calculated using the method described in equation 

[18]). The sudden drop in the number of stations ca. 1990 is largely a result of the methodology 

used in compiling the GHCN dataset; GHCN generally only accepts records for stations that 

explicitly issue a monthly summary report however many stations have stopped reporting 

monthly results and only reported daily ones. Despite this drop, Figure 4(c) shows that the 

coverage of the Earth’s land surface remained above 95%, reflecting the broad distribution of the 

stations that did remain. 
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Figure 4.  (Upper) Station locations for the 7280 temperature stations in the Global Historical 

Climatology Network Monthly dataset.  (Lower Left) Number of active stations over time.  

(Lower Right) Percentage of the Earth’s land area sampled by the available stations versus time, 

calculated as explained in the text.  The transition during the mid 1950s corresponds to the 

appearance of the first temperature records on Antarctica. 

 

We applied the Berkeley Average methodology to the GHCN monthly data. The results 

and associated uncertainties are shown in Figure 5.  The upper plot shows the 12-month land-

only moving average and its associated 95% uncertainty; the lower plot shows the result of 

applying a 10-year moving average.  Applying the methods described here, we find that the 

average land temperature from Jan 1950 to Dec 1959 was 8.849 ± 0.033 C, and temperature 

average during the most recent decade (Jan 2000 to Dec 2009) was 9.760 ± 0.041 C, an increase 

of 0.911 ± 0.042 C.  The trend line for the 20
th

 century is calculated to be 0.733 ± 0.096 

C/century, well below the 2.76 ± 0.16 C/century rate of global land-surface warming that we 

observe during the interval Jan 1970 to Aug 2011.  (All uncertainties quoted here and below are 

95% confidence intervals for the combined statistical and spatial uncertainty).  Though it is 

sometimes argued that global warming has abated since the 1998 El Nino event (e.g. Easterling 

and Wehner 2009, Meehl et al. 2011), we find no evidence of this in the GHCN land data.  

Applying our analysis over the interval 1998 to 2010, we find the land temperature trend to be 

2.84 ± 0.73 C / century, consistent with prior decades.  Meehl et al. (2011) associated the recent 
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decreases in global temperature trends with increased heat flux into the deep oceans.  The fact 

that we observe no change in the trend over land would seem to be consistent with the 

conclusion that any change in the total global average has been driven solely with oceanic 

processes. 

 

 
Figure 5.  Result of the Berkeley Average Methodology applied to the GHCN monthly data.  Top 

plot shows a 12-month land-only moving average and associated 95% uncertainty from statistical 

and spatial factors.  The lower plot shows a corresponding 10-year land-only moving average and 

95% uncertainty.  This plot corresponds to the parameter  in Equation 5.  Our plotting 

convention is to place each value at the middle of the time interval it represents.  For example, the 

1991-2000 average in the decadal plot is shown at 1995.5. 

 

In the section on the sampling method, we discussed the determination of statistical 

uncertainties by dividing the full data set into five subsamples.  In Figure 6 below, we show the 

results of doing this for the GHCN data set.  We show this primarily because the sampling 

method is more intuitive for many people than is the jackknife, and the charts in Figure 6 make it 

clear why the statistical uncertainties are small.  The five completely independent subsamples 

produce very similar temperature history when processed via the Berkeley Average 

methodology. 
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Figure 6.  Five independent temperature reconstructions each derived from a separate 20% of the 

GHCN stations.  The upper figure shows the calculation of the temperature record based on five 

independent subsamples. The lower plot shows their difference from the 100% result, and the 

expected 95% uncertainty envelope.  The uncertainty envelope used here is scaled by √  times 

the statistical uncertainty reported for the complete Berkeley Average analysis.  This reflects the 

larger variance expected for the 20% samples. 

 

The spatial structure of the climate change during the last century is shown in Figure 7 

and found to be fairly uniform, though with greater warming over the high latitudes of North 

America and Asia, consistent with prior results (Hansen et al. 2010).  We also show the pattern 

of warming since the 1960s, as this is the period during which anthropogenic effects are believed 

to have been the most significant.  Warming is observed to have occurred over all continents, 

though parts of South America are consistent with no change.  No part of the Earth’s land surface 

shows appreciable cooling. 
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Figure 7. Maps showing the decadal average changes in the land temperature field.  In the upper 

plot, the comparison is drawn between the average temperature in 1900 to 1910 and the average 

temperature in 2000 to 2010.  In the lower plot, the same comparison is made but using the 

interval 1960 to 1970 as the starting point.  We observe warming over all continents with the 

greatest warming at high latitudes and the least warming in southern South America.  

 

In Figure 8, we compare our land reconstruction to the land reconstructions published by 

the three other groups (results updated online, methods described by Brohan et al. 2006; Smith et 

al. 2008; Hansen et al. 2010).  Overall our global land average is similar to those obtained by 

these prior efforts.  There is some disagreement amongst the three groups, and our result is most 

similar overall to NOAA’s work.  The differences apparent in Figure 8 may partially reflect 

difference in source data, but they probably primarily reflect differences in methodology. 

The GHCN dataset used in the current analysis overlaps strongly with the data used by 

other groups.  The GHCN was developed by NOAA and is the sole source of the land-based 

weather station data in their temperature reconstructions (but does not include the ocean data also 

used in their global temperature analyses).  In addition, GISS uses GHCN as the source for ~85% 

of the time series in their analysis.  The remaining 15% of GISS stations are almost exclusively 

US and Antarctic sites that they have added / updated, and hence would be expected to have 

somewhat limited impact due to their limited geographic coverage.  HadCRU maintains a 
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separate data set from GHCN for their climate analysis work though approximately 60% of the 

GHCN stations also appear in HadCRU. 

 

 
Figure 8.  Comparison of the Berkeley Average to existing land-only averages reported by the 

three major temperature groups.  The upper panel shows 12-month moving averages for the four 

reconstructions, and a gray band corresponding to the 95% uncertainty range on the Berkeley 

average.  The lower panel shows each of the prior averages minus the Berkeley average, as well 

as the Berkeley average uncertainty.  As noted in the text, there is a much larger disagreement 

among the existing groups when considering land-only data than when comparing the global 

averages.  HadCRU and GISS have systematically lower trends than Berkeley and NOAA.  In 

part, this is likely to reflect differences in how “land-only” has been defined by the three groups.  

Berkeley is very similar to the NOAA result during the twentieth century and slightly lower than 

all three groups during the 19th century. 

 

The GISS and HadCRU work produce lower land-average temperature trends for the late 

part of the 20
th

 century.  In this regard, our analysis suggests a degree of global land-surface 

warming during the anthropogenic era that is consistent with prior work (e.g. NOAA) but on the 

high end of the existing range of reconstructions.  We note that the difference in land average 

trends amongst the prior groups has not generally been discussed in the literature.  In part, the 

spread in existing land-only records may have received little attention because the three groups 

have greater agreement when considering global averages that include oceans (Figure 1).   We 

strongly suspect that some of the difference in land-only averages is an artifact of the different 

approaches to defining “land-only” temperature analyses.  Our analysis and that produced by 

NOAA explicitly construct an average that only considers temperature values over land.  
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However, that is not the only possible approach.  The literature suggests that the GISS “land-

only” data product may be generated by measuring the “global” temperature fields using only 

data reported over land.  In this scenario temperature records in coastal regions and on islands 

would be extrapolated over the oceans to create a “global” field using only land data. Whether or 

not this approach was actually used is unclear from the literature, but it would result in an 

overweighting of coastal and oceanic stations.  This would in turn lead to a reduction in the 

calculated “land” trend in a way that is qualitatively consistent with the difference observed in 

Figure 8.   

Though we are similar to NOAA for most of the 20
th

 century, we note that we have 

somewhat lower average temperatures during the period 1880-1930.  This gives us a slightly 

larger overall trend for the 20
th

 century than any of the three groups.  Most of that difference 

comes from the more uncertain early period.  In previous work, it has been argued that 

instrumentation changes may have led to an artificial warm bias in the early 1900s (Folland et al. 

2001, Parker 1994).  To the degree that our reconstruction from that era is systematically lower 

than prior work (Figure 8), it could be that our methods are more resistant to biases due to those 

instrumental changes. 

As is shown in Figure 5, we extend our record all the way back to 1800, including 50 

more years than HadCRU and 80 more years than NOAA and GISS.  We feel this extension is 

justifiable though obviously, any such reconstruction will have large uncertainties.  Our analysis 

technique suggests that temperatures during the 19
th

 century were approximately constant (trend 

0.20 ± 0.25 C/century) and on average 1.48 ± 0.13 C cooler than the interval 2000-2009.  Circa 

1820 there is a negative temperature excursion that happens to roughly coincide with both the 

1815 eruption of Mount Tambora and the Dalton Minimum in solar activity.  The Mount 

Tambora eruption was the largest eruption in the historical era and has been blamed for creating 

the “year without a summer” (Oppenheimer 2003; Stothers 1984).  It was preceded by an 

additional large eruption in 1809 (Wagner and Zorita 2005).  The Dalton Minimum in solar 

activity from circa 1790 to 1830 includes the lowest 25 year period of solar activity during the 

last 280 years, but this is considered to have produced only minor cooling during this period, 

while volcanism was the dominant source of cooling (Wagner and Zorita 2005).  Though the 

uncertainties are very large, the fact that this temperature excursion is well-established in the 

historical record and motivated by known climate forcings gives us confidence that the ~1820 

excursion is a reflection of a true climate event.  However, we will note that our early data is 

heavily biased towards North America and Europe, so we cannot draw conclusions about the 

regional versus global extent of the event. 

As discussed above, the uncertainty in our result is conceptually divided into two parts, 

the “statistical uncertainty” which measures how well the temperature field was constrained by 

data in regions and times where data is available,  ( ⃑   )   , and the “spatial uncertainty” 

which measures how much uncertainty has been introduced into the temperature average due to 

the fact that some regions are not effectively sampled,  ( ⃑   )   .  These uncertainties for the 

GHCN analysis are presented in Figure 9.   
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Figure 9.  The 95% uncertainty on the Berkeley Average (red line) and the component spatial 

(blue) and jackknife statistical (green) uncertainties for 12-month moving land averages.  For 

comparison the sampling statistical uncertainty is also shown (black), though it does not 

contribute to the total.  From 1900 to 1950, the spatial uncertainty is dominated by the complete 

lack of any stations on the Antarctic continent.  From 1960 to present, the statistical uncertainty is 

largely dominated by fluctuations in the small number of Antarctic temperature stations.  For 

comparison, the land-only 95% uncertainties for HadCRU and NOAA are presented.  As 

discussed in the text, in addition to spatial and statistical consideratiosn, the HadCRU and NOAA 

curves include additional estimates of “bias error” associated with urbanization and station 

instrumentation changes that we do not currently consider.  The added “bias error” contributions 

are small to negligible during the post 1950 era, but this added uncertainty is a large component 

of the previously reported uncertainties circa 1900. 

 

The two types of uncertainty tend to co-vary.  This reflects the reality that station 

networks historically developed in a way that increasing station density (which helps statistical 

uncertainties) tended to happen at similar times to increasing spatial coverage (which helps 

spatial uncertainties).  Overall, we estimate that the total uncertainty in the 12-month land-

surface average from these factors has declined from about 0.7 C in 1800 to about 0.06 C in the 

present day.   
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The step change in spatial uncertainty in the early 1950s is driven by the introduction of 

the first weather stations to Antarctica during this time.  Though the introduction of weather 

stations to Antarctica eliminated the largest source of spatial uncertainty, it coincidentally 

increased the statistical uncertainty during the post-1950 period.  The Antarctic continent 

represents slightly less than 10% of the Earth’s land area and yet at times has been monitored by 

only about dozen weather stations.  To the extent that these records disagree with each other they 

serve as a large source of statistical noise.  An example of this occurred in 1979 (see Figure 9) 

when an uncertainty of a couple degrees regarding the mean temperature of Antarctica led to an 

uncertainty of ~0.2 C for the whole land-surface. 

Since the 1950s, the GHCN has maintained a diverse and extensive spatial coverage, and 

as a result the inferred spatial uncertainty is low.  However, we do note that GHCN station 

counts have decreased precipitously from a high of 5883 in 1969 to about 2500 at the present 

day.  This decrease has primarily affected the density of overlapping stations while maintaining 

broad spatial coverage.  As a result, the statistical uncertainty has increased somewhat.  We note 

again that the decrease in station counts is essentially an artifact of the way the GHCN monthly 

data set has been constructed.  In fact, the true density of weather monitoring stations has 

remained nearly constant since the 1960s, and that should allow the “excess” statistical 

uncertainties shown here to be eliminated once a larger number of stations are considered in a 

future paper. 

A comparison of our uncertainties to those reported by HadCRU and NOAA (Figure 9) is 

warranted (comparable figures for GISS are not available).  Over much of the record, we find 

that our uncertainty calculation yields a value 50-75% lower than these other groups.  As the 

sampling curves demonstrate (Figure 6), the reproducibility of our temperature time series on 

independent data is extremely high, which allows us to feel justified in concluding that the 

statistical uncertainty is very low.  This should be sufficient to estimate the uncertainty 

associated with any unbiased sources of random noise affecting the data.  Similarly, the 

concordance of the analytical and empirical spatial uncertainties gives us confidence in those 

estimates as well.   

In comparing the results, we must note that curves by prior groups in Figure 9 include an 

extra factor they refer to as “bias error” by which they add extra uncertainty associated with 

urban heat islands and systematic changes in instrumentation (Brohan et al. 2006; Smith and 

Reynolds 2005).  As we do not include comparable factors, this could explain some of the 

difference.  However, the “bias” corrections being used cannot explain the bulk of the difference.  

HadCRU reports that the inclusion of “bias error” in their land average provides a negligible 

portion of the total error during the period 1950-2010.  This increases to about 50% of the total 

error circa 1900, and then declines again to about 25% of the total error around 1850 (Brohan et 

al. 2006).  These amounts, though substantial, are still substantially less than the difference 

between our uncertainty estimates and the prior estimates.  We therefore conclude that our 

techniques can estimate the global land-based temperature with considerably less spatial and 

statistical uncertainty than prior efforts. 

The assessment of bias / structural uncertainties may ultimately increase our total 

uncertainty, though such effects will not be quantified here.  As mentioned previously, in one of 

our other submitted papers (Wickham et al.) we conclude that the residual effect of urbanization 

on our temperature reconstruction is probably close to zero nearly everywhere.  In addition, the 

scalpel technique, baseline adjustments, and reliability measures should be effective at reducing 

the impact of a variety of biases.  As such, we believe that any residual bias in our analysis will 
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also be less than previous estimates.  However, further analysis of our approach is needed before 

we can decide how effective our techniques are at eliminating the full range of biases. 

We should also comment on the relatively large uncertainties in Figure 9 compared to 

those in Figure 1.  These imply that the other groups believe past ocean temperatures have been 

much more accurately constrained than land-based temperatures.  This conclusion is stated more 

explicitly at Smith and Reynolds 2005, Brohan et al. 2006.   

In considering the very earliest portions of our reconstruction, we should note that our 

uncertainty analysis may be appreciably understating the actual uncertainty.  This can occur for 

two principle reasons.  First, the uncertainty attributed to spatial undersampling is based 

primarily on the variability and spatial structure of climate observed during the latter half of the 

twenty century.  For example, our approach assumes that the difference between temperatures in 

the Southern Hemisphere and temperatures in Europe remain similar in magnitude and range of 

variation in the past as they are today.  The plausibility of this assumption is encouraged by the 

relative uniformity of climate change during the 20
th

 century, as shown in Figure 7.  However, 

this assumption could turn out to be overly optimistic and result in an under (or over) estimation 

of the natural climate variation in other parts of the world.  Second, as the number of stations 

gets low the potential for additional systematic biases increases.  The statistical error 

measurement technique essentially tests the internal consistency of the data.  The more the data 

disagrees amongst itself, the larger the estimated statistical error.  This is adequate if older 

measurement technology is simply more prone to large random errors.  However, this technique 

cannot generally capture biases that occur if a large fraction of the records erroneously move in 

the same direction at the same time.  As the number of available records becomes small, the odds 

of this occurring will increase.  This is made more likely every time there is a systematic shift in 

the measurement technology being employed. 

13. Climatology  
Earlier in this paper, we defined the local temperature at position and time  ⃑     to be 

given by 

 ( ⃑    )   (  )   ( ⃑ )   ( ⃑    ) 

 

where  (  ) is the global average temperature plotted in Figure 5,  ( ⃑    ) is the “weather 

field” that we estimated using equation 12.  The remaining term  ( ⃑ ) is the approximately time-

invariant long-term mean temperature of a given location, often referred to as the climatology.  

In our construction we treat this via equation [3] a function of latitude, altitude, and a smoothed 

local average calculated using equation [24]. As mentioned earlier, the latitude and altitude 

components account for about 95% of the structure.  A map of the climatology  ( ⃑ ) is shown in 

Figure 10.  We found the global land average from 1900 to 2000 to be about 8.90 ± 0.48 C, 

which is broadly consistent with the estimate of 8.5 C provided by Peterson et al. (2011).  The 

Berkeley Average analysis process is somewhat unique in that it produces a global climatology 

and estimate of the global mean temperature as part of its natural operations, rather than 

discarding this information as the three other groups generally do. 
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Figure 10.  A map of the derived Climatology term,   95% of the variation is accounted for 

by altitude and latitude.  Departure from this is evident in Europe and in parts of Antarctica. 

14. Discussion 
In this paper we described a new approach to global temperature reconstruction. We used 

spatially and temporally diverse data exhibiting varying levels of quality and constructed a 

global index series that yields an estimate of the mean surface temperature of the Earth.  We 

employ an iteratively reweighted method that simultaneously determines the history of global 

mean land-surface temperatures and the baseline condition for each station, as well as making 

adjustments based on internal estimates of the reliability of each record.  The approach uses 

variants of a large number of well-established statistical techniques, including a generalized 

fitting procedure, Kriging, and the jackknife method of error analysis.  Rather than simply 

excluding all short records, as was done by prior Earth temperature analysis groups, we designed 

a system that allows short records to be used with appropriate – but non-zero – weighting 

whenever it is practical to do so.  This method also allows us to exploit discontinuous and 

inhomogeneous station records without prior “adjustment” by breaking them into shorter 

segments at the points of discontinuity.  

It is an important feature of this method that the entire discussion of spatial interpolation 

has been conducted with no reference to gridded data sets at all.  The fact that our approach can, 

in principle, avoid gridding allows us to avoid a variety of noise and bias that can be introduced 

by gridding.  That said, the integrals required by equation [2] will in general need to be 

computed numerically, and per equation [12] require the solution of a large number of matrix 

inverse problems. In the current paper, the numerical integrals were computed based on a 15,984 

element equal-area array.  Note that using an array for a numerical integration is qualitatively 

different from the gridding used by other groups.  There are no sudden discontinuities, for 

example, depending on whether a station is on one side of a grid point or another, and no trade-

offs to be made between grid resolution and statistical precision.  We estimate that the blurring 

effects of the gridding methods used by HadCRU and GISS each introduce an unaccounted for 

uncertainty of approximately ~0.02 C in the computation of annual mean temperature.  Such a 

gridding error is smaller than the total ~0.05 C uncertainties these groups report during the 
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modern era, but not so small as to be negligible.  The fact that the resolution of our calculation 

can be expanded without excess smoothing or trade offs for bias correction allows us to avoid 

this problem and reduce overall uncertainties.  In addition, our approach could be extended in a 

natural way to accommodate variations in station density; for example, high data density regions 

(such as the United States) could be mapped at higher resolution without introducing artifacts 

into the overall solution. 

We tested the method by applying it to the GHCN data based from 7280 stations used by 

the NOAA group.  However, we used the GHCN raw data base without the “homogenization” 

procedures that were applied by NOAA which included adjustments for documented station 

moves, instrument changes, time of measurement bias, and urban heat island effects, for station 

moves.  Rather, we simply cut the record at time series gaps and places that suggested shifts in 

the mean level.  Nevertheless, the results that we obtained were very close to those obtained by 

NOAA using the same data and their full set of homogenization procedures.  Our results did 

differ, particularly in recent years, from the analyses reported by the other two groups (NASA 

GISS and HadCRU).  In the older periods (1860 to 1940), our statistical methods allow us to 

significantly reduce both the statistical and spatial uncertainties in the result, and they allow us to 

suggest meaningful results back to 1800.  We note that we have somewhat lower average 

temperatures during the period 1880-1930 than found by the prior groups, and significantly 

lower temperatures in the period 1850 to 1880 than had been deduced by the HadCRU group.  

We also see evidence suggesting that temperature variability on the decadal time scale is lower 

now than it was in the early 1800s.  One large negative swing, around 1820, coincides with both 

the eruption of Mt. Tambora and the Dalton Minimum in solar activity. 

In another paper, we will report on the results of analyzing a much larger data set based 

on a merging of most of the world’s openly available digitized data, consisting of data taken at 

over 39,000 stations, more than 5 times larger than the data set used by NOAA. 
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APPENDIX 

Symbols used in the Berkeley Average method. 

 

  the time 

   the j-th time step (i.e. month) 

 ⃑ an arbitrary position on the surface of the earth 

 ⃑  the position of the i-th station on the surface of the earth 

 ( ⃑  ) the true temperature at location  ⃑ and time   

 ̂( ⃑  ) the estimated temperature at location  ⃑ and time   

  (  ) the measured temperature time series (e.g. “data”) at the i-th station and j-th 

time step 

 ( ) the global mean temperature time series 

 ( ⃑) the long-term average temperature as a function of location (“climatology”) 

 ( ⃑  ) spatial and temporal variations in  ( ⃑  ) not ascribed to  ( ) or  ( ⃑) (e.g. 

the “weather”) 

 ( ⃑) the temperature change as a function of latitude 

 ( ⃑) the temperature change as a function of surface elevation 

 ( ⃑) the variations in  ( ⃑) not ascribed to  ( ⃑) or  ( ⃑), i.e. the geographical 

anomalies in the mean temperature field. 

 ̂  the baseline temperature of the i-th station 

  ( ⃑   ) the initial spatial weight of the i-th station at location  ⃑ and time    

  
 ( ⃑   ) the adjusted spatial weight of the i-th station at location  ⃑ and time    

   the reliability weight associated with the i-th station 

  the mean local misfit between a temperature record and the interpolated 

field 

 ( ⃑   ) a measure of the completeness of the sampling at location  ⃑ and time    

 ̅(  ) a measure of the completeness of the sampling across all land at time    

  ( ⃑) the baseline spatial weighting factor for the i-th station at location  ⃑ 

 ( ⃑   ⃑ ) the expected spatial correlation in temperature between locations  ⃑  and  ⃑  

 ( ⃑   ⃑ ) the covariance in temperature between locations  ⃑  and  ⃑  

  
  the variance of the temperature record at the i-th station 

     the outlier weight associated with data point   (  )  

  (  ) the difference between data point   (  )  and the estimated value of the 

temperature field at the same location and time. 

 

Table 1: Summary of the primary symbols used to describe the Berkeley Earth averaging 

method. 
 


