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Abstract 18 

 19 

The effect of urban heating on estimates of global average land surface 20 

temperature is studied by applying an urban-rural classification based on 21 

MODIS satellite data to the Berkeley Earth temperature dataset compilation of 22 

36, 869  sites from 15 different publicly available sources.  We compare the 23 

distribution of linear temperature trends for these sites to the distribution for a 24 

rural subset of 15, 594 sites chosen to be distant from all MODIS-identified 25 

urban areas.  While the trend distributions are broad, with one-third of the 26 

stations in the US and worldwide having a negative trend, both distributions 27 

show significant warming. Time series of the Earth’s average land 28 

temperature are estimated using the Berkeley Earth methodology applied to 29 

the full dataset and the rural subset; the difference of these is consistent with 30 

no urban heating effect over the period 1950 to 2010, with a slope of -0.10 +- 31 

0.24 / 100yr (95% confidence).   32 

 33 

 34 

Keywords and Abbrevations: UHI, Land Surface Temperature, GISS, 35 
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1. Introduction 38 

 39 

The Urban Heat Island (UHI) effect describes the observation that temperatures in a city are 40 

often higher than in its rural surroundings. London was the first urban heat island to be 41 

documented [1] but since then many cities have been identified as urban heat islands 42 

[2,3,4,5] A well-known example is Tokyo where the temperature has risen much more 43 

rapidly in the city than in nearby rural areas: Fujibe estimates excess warming of almost 44 

2oC/100yr compared to the rest of Japan [6] The warming of Tokyo is dramatic when 45 

compared to a global average as seen in Fig.1. The UHI effect can be attributed to many 46 

physical differences between urban and rural areas, including absorption of sunlight, 47 

increased heat storage of  artificial surfaces, obstruction of re-radiation by buildings, 48 

absence of plant transpiration, differences in air circulation, and other phenomena [7]  49 

 50 

Urban areas are heavily overrepresented in the siting of temperature stations: less than 1% 51 

of the globe is urban but 27% of the Global Historical Climatology Network Monthly 52 

(GHCN-M) stations are located in cities with a population greater than 50,000. If the typical 53 

urban station exhibited urban heating of the magnitude of Tokyo, this could result in a 54 

severe warming bias in global averages using urban stations.  To avoid this bias the urban 55 

heating contribution to global temperature change should be isolated to the greatest extent 56 

possible. 57 

 58 
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Figure 1 Annual running mean of monthly temperatures at Tokyo compared to a 59 

global land average for 1900-2010 60 

 61 

 62 

The goal of this paper is to evaluate the urban heat island contribution to the Berkeley Earth 63 

Surface Temperature global land average.  Detailed analyses of average land temperature 64 

time series of the Earth’s surface (Tavg) have been reported by three major teams: the NASA 65 

Goddard Institute for Space Science (GISS), the National Oceanographic and Atmospheric 66 

Administration (NOAA), and the collaboration between the Hadley Centre of the UK Met 67 

Office and the Climatic Research Unit of the University of East Anglia (HadCRU). They 68 

differ in the methods used to account for the effect of urban heating on their global averages. 69 

The conclusion of the three groups is that the urban heat island contribution to their global 70 

averages is much smaller than the observed global warming.  The topic is not without 71 

controversy.  We ask whether the presence of urban stations results in overestimates of 72 

warming in the Berkeley Earth Surface Temperature global land average.   73 

 74 
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 75 

The approach of the GISS team is to identify urban, “peri-urban” (near urban) and rural 76 

stations using satellite images of nighttime lights [8] Urban and peri-urban stations are then 77 

adjusted by subtracting a two-part linear trend based on comparison to an average of nearby 78 

rural stations.  The result of the adjustment on their global average is a reduction of about 79 

0.01°C in warming over the period 1900 - 2009.   80 

 81 

The NOAA group does not perform a specific urban adjustment in their most recent 82 

analysis, GHCN-M version 3. They use an automated pairwise comparison procedure to 83 

make adjustments for documented and undocumented changes in station records, and expect 84 

that this process will remove most urban warming [9].  When applied to the United States 85 

Historical Climatology Network, Menne reports that the average minimum temperature of 86 

the 30% most urban stations (based on population metadata) rises 0.06°C per century more 87 

than the more rural locations between 1895 – 2007 [10]. 88 

 89 

The HadCRU group does not specifically model or adjust for urban warming (although 90 

some sites suspected to be influenced by urbanization are excluded from their analysis 91 

[11,12] Instead, they include an estimate for the UHI effect when they give their uncertainty 92 

statement.  In a recent analysis, they add a one-sided one sigma uncertainty starting in 1900 93 

and increasing linearly by 0.055°C per century [13]. This value is based on a previous 94 

analysis of urban heating by  Jones [14].   95 

 96 
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Our approach most closely aligns with the studies of Jones [14], Peterson [15] and Parker 97 

[16], in that two averages are constructed, one based on stations that should be free of urban 98 

heating and one using all station data. The difference between the two averages is examined 99 

for evidence that using all stations, including those suspected of containing urban heating, 100 

overestimates warming. Despite using different methods to identify a rural global average, 101 

all three concluded that the magnitude of the effect of urban heating on the global averages 102 

examined was small.      103 

 104 

Other studies have examined the urban warming at a station level.  Karl paired rural stations 105 

with nearby urban stations in the USHCN and found a warming bias that increases with 106 

increasing population of the city associated with the urban station [17].  However, due to the 107 

small number of stations affected he concluded that the magnitude of the effect would be 108 

small in a US average.  Peterson also compared urban and rural stations in the USA and 109 

found after careful consideration of inhomogeneities, station location, time of observation 110 

bias and instrumentation differences the apparent warm bias of urban stations was 111 

insignificant [18]. 112 

 113 

De Laat & Maurellis  used industrial CO2 emissions to classify stations into industrialized 114 

and non-industrialized stations [19].  They found a significant increase in average 115 

temperature trend for industrialized stations.  McKitrick & Micheals found significant 116 

correlations between the local trend in gridded averages and a number of social and 117 

economic indicators, and estimated one half of the observed global warming trend (over 118 

1980 - 2002) might be due to these factors[20,21].  Schmidt  dismissed these studies as 119 
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finding spurious correlations due to inadequate modeling of spatial correlation and that the 120 

robustness to alternative sources of data needed to be assessed [22].  McKitrick & 121 

Nierenberg  countered with an analysis designed to answer Schmidt's criticisms and 122 

confirmed their earlier findings [23].    123 

 124 

The apparent contradiction of these studies is partly due to different areas of focus and 125 

perhaps to gross data errors in Mckitrick [20,21,23].  De Laat & Maurellis [19], McKitrick 126 

& Micheals [20,21] and McKitrick & Nierenberg [23] use the CRUTemp gridded product, 127 

which as mentioned, contains little effort to remove urban heating effects.  McKitrick & 128 

Micheals [20,21] and  McKitrick & Nierenberg [23]  also focus on finding the heating signal 129 

in local trends rather than evaluating the effect on a global average. Finally,the severe data 130 

errors in Mckitrick [20,21,23] derive from the method used to estimate population and 131 

population growth rates for 5x5 grid cells. In each of the papers the population for 132 

individual grid cells is derived by taking the national population and applying it to every 133 

gridcell scaled to the gridcell area. For example, the population for the Gobi Desert gridcell 134 

is the same as the population for Bejing. In addition, no care was taken to differentiate the 135 

population of countries from their terroritories, such that the grid that contains St. Helena, is 136 

assigned the same population as England. The same error causes Antarctica to have the 137 

population of England since temperature stations there are identified as belonging to the 138 

United Kingdom. If these errors were corrected, it might be possible to diagnose the exact 139 

reasons for the different results given by those papers. 140 

 141 
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We consider two sets of stations, a complete set and a set restricted to sites that are far from 142 

urban regions. To accomplish this we use the MODIS urban classification map combined 143 

with our large collection of temperature stations [24,25]. This is a larger set of stations than 144 

previous analyses have included.  We first describe the datasets, and place the problem of 145 

estimating urban heating in context by conducting an investigation of the linear trends in 146 

this large set of temperature stations. Our primary analysis of the significance of site 147 

selection restricted to non-urban stations is then performed with the Berkeley Earth 148 

Temperature averaging procedure.  149 

 150 

 151 

2. Data 152 

 153 

The analysis presented here is based on merged monthly average temperatures from the 154 

Berkeley Earth Surface Temperature Study dataset. This dataset consists of measurements 155 

from 36, 869 unique stations, which are merged from 15 preexisting data archives (the 156 

dataset and a description of the merging and filtering can be found at, 157 

http://berkeleyearth.org/dataset/). We classify these stations as rural or non-rural by 158 

comparing their locations with the MODIS 500m Global Urban Extent classification map 159 

(MOD500) of Schneider  [24,25] Schneider  used Collection 5 MODIS 500-m resolution 160 

satellite imagery to classify land use as urban using supervised decision trees, a statistical 161 

learning algorithm that they trained using a set of sites with known land cover type.  They 162 

define urban areas to be “places that are dominated by the built environment”. Urban heat 163 

islands are primarily a result of replacing the natural (soil, vegetation, etc.) surface of the 164 
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land with buildings and artificial ground surfaces, which makes the MOD500 dataset 165 

potentially quite helpful in identifying built-up regions that may be subject to urban heating.  166 

It may provide a criterion that is less socio-economically biased than night lights data, 167 

therefore it offers an alternative to the approach used by GISS. The MOD500 map is 168 

available as a raster image, providing a binary classification (urban or not urban) for a 169 

global grid with pixels of size 15 arc-seconds.  According to Potere the MOD500 map 170 

outperforms other global urban maps in terms of predicting city size and per pixel 171 

agreement on a sample of known cities with population greater than 100,000 [26]. 172 

 173 

Unfortunately, a portion of station locations in the Berkeley Earth merged dataset are 174 

reported only to the nearest tenth of a degree in latitude and longitude.  This makes it 175 

impossible to identify each station as definitively urban or rural using the fine resolution 176 

MOD500 map.  This imprecision in site location could yield a site which is urban being 177 

labeled as rural. An alternative, which we adopt here, is to analyze the urban-rural split in a 178 

different way. Rather than compare urban sites to non-urban, thereby explicitly estimating 179 

UHI effects, we split sites into very-rural and not very-rural. We defined a site as “very-180 

rural” if the MOD500 map showed no urban regions within one tenth of a degree in latitude 181 

or longitude of the site.  We expect these very-rural sites to be reasonably free from urban 182 

heating effects.  Of the 36,869 sites, 15,594  were classified by this method as very-rural. 183 

The station locations and their classifications are displayed in Figure 2.  Although the 184 

continental USA looks saturated with very-rural sites this is due to the density of stations in 185 

the USA and overplotting of points.  In actuality 18% of the stations in the USA are 186 

classified as very-rural by our method. 187 
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 188 

We note that the imprecision in station locations also affects the GISS night lights analysis, 189 

with approximately 1/8th of the stations in their study also being positioned to only the 190 

nearest tenth of a degree.  The GISS analysis does not explicitly address the possibility that 191 

station types might be misclassified due to geolocation uncertainties that far exceed to the 192 

30 arcsecond resolution of the night lights maps [8]. 193 

 194 

The MOD500 map identifies urban areas circa 2001.  We make the assumption that areas 195 

that are not urban in the MOD500 map, have always been not urban.  This means a station 196 

classified as very-rural, is assumed to have been rural for the length of its station history.  197 

This assumption is supported by considering the historical population figures for the 198 

stations. Global historical estimates of population density are available in gridded format (5 199 

arc minutes) from Hyde 3.1 [27]. The median population density of very rural stations in 200 

1900 was  1 person per sqkm and in 2005 the median density was slightly less than 3 people 201 

per sq km.  202 

 203 

A corresponding continuity assumption, that urban stations have always been urban, would 204 

be inappropriate for areas that are urban in the MOD500 map. Taking population as 205 

measure of urbanity indicates that roughly 1/3 of not very rural stations had population 206 

densities less than 10 people per sqkm in 1900. Further in 1900 the median population 207 

density for the sites was 31 people per sqkm and by 2005 this increases to 130 people per 208 

sqkm. The not very rural stations, thus, are a combination of rural sites that become urban 209 

over time and urban sites that become more urbanized. The very rural sites in contrast have 210 
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always been very rural. This   is one of the reasons we take the approach of identifying the 211 

stations that should be free of urban heating, rather than trying to identify stations that are 212 

subject to urban heating.A strict definition of rural allows us to build a global average based 213 

only on sites that are mostly free of any urban heating influence.  The very-rural sites could 214 

potentially be surrounded by a built-up environment at a scale smaller than the resolution of 215 

the MOD500 map, but we assume that any resulting heating would be small compared to a 216 

city. 217 



 13 

Figure 2 Locations of the 36,869 stations in the Berkeley Earth data set  218 

219 

 220 

 221 

3. Station Trend Analysis  222 



 14 

 223 

A straightforward way to gain insight into the temperature trends associated with the 224 

stations in very-rural locations is a station trend analysis.  We apply a very simple procedure 225 

in which a straight line is fit (using least squares minimization) to the temperature record for 226 

each station; the slope of this line is called the temperature trend for that station. The 227 

distribution of these trends can then be examined.  For the purposes of this simple analysis, 228 

we do not consider whether any individual trend is statistically significant.  In fact, we 229 

expect many trends are driven primarily by statistical fluctuations and noise, but by looking 230 

at such trends in the aggregate we can yield some basic insights about the population of 231 

station time series from which they are derived.  A primary limitation of the trend analysis is 232 

that it is an average over stations and time, not an average over the true land distribution of 233 

the Earth or the distribution of recording stations though time.  Nevertheless, this technique 234 

has the advantage of simplicity, and it illustrates important features of the temperature 235 

record  that are key to understanding the inherent difficulty in detecting a UHI bias signal: 236 

the UHI bias, while real, may be small relative to other variations in station data and thus 237 

difficult to distinguish from noise 238 

 239 

For the station trend analysis, we used the data set of the Berkeley Earth project consisting 240 

of the raw data for each of 36,869 sites with seasonality removed (Berkeley Earth Merged 241 

Dataset version 2 – TAVG Monthly - Non-seasonal / Quality Controlled , 242 

http://berkeleyearth.org/data/).  243 

 244 
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A histogram of the station trends is shown in Figure 3a, categorized by station record length.  245 

The distribution is broad with a width substantially larger than the mean; 65% of the slopes 246 

are positive, i.e. there are about twice as many stations that appear to warm as stations that 247 

appear to cool.  The dispersion is larger in the records of short duration, but even in the 248 

stations with records longer than 30 years 24% have negative trends. 249 

 250 

The reason the records with the shortest duration (< 10 years) have the broadest distribution 251 

is that short term variations in individual time series are typically several degrees C, so a 2 252 

degree fluctuation during a 10 year period could yield an apparent “trend” of 20 degrees per 253 

century. There were other causes for spuriously large trends; for example, in some samples 254 

there is a gap in the data lasting for years or decades, with a large jump in the value of the 255 

average temperature when the data resumes.  This is likely due to undocumented station 256 

changes and/or the reuse of an existing site identifier. Very large trends are largely non-257 

physical and trends more extreme than ±15 oC/100yr are excluded from the histogram but 258 

not the following calculations; this excludes about 17 % of all sites but only 0.75% of sites 259 

with records longer than 10 years.  To avoid the outliers unduly influencing of estimates of 260 

the center of the distributions we compare medians rather than means.  261 

 262 
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Figure 3 Temperature trends 263 

 264 

 265 

The median trends with standard errors are given in Table 1.  266 

 267 

Table 1. Estimates for the median trends for all and rural stations2 268 

Station characteristic   Median trend in oC/100yr  269 

    Sites with ≥ 2 months  Sites with >30 years 270 

all        0.96 ± 0.03  (n = 36858) 0.87 ± 0.02  (n = 14481) 271 

very rural     1.10 ± 0.06  (n = 15587) 1.02  ± 0.05 (n = 4765) 272 

 273 

The standard errors were obtained by bootstrap resampling (sampling with replacement) 274 

of all 36858 trends, calculating the median trend in each group, and using the standard 275 

deviation of the group medians to estimate the standard error in the overall median.  They 276 

do not take into account the spatial correlation of the trends and hence underestimate the 277 

true uncertainty in the estimate of the median trend. 278 

                                                
2 The number of stations in each group is shown in brackets. Stated errors are 2σ 

uncertainty estimated from bootstrap samples. 
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 279 

In this table we see evidence of “global warming.”  Using all the records there is a median 280 

warming trend of 0.96 ± 0.04 oC/100yr (2σ error).  The estimated warming trend for the 281 

very-rural group is larger than that based on all records, in the opposite direction expected 282 

from urban heating.  The difference observed in this simple analysis reflects that there are 283 

many sources of variation in individual station trends that contribute larger effects than 284 

any effect due to urban heating.  To extract the urban heating contribution from the 285 

individual trends a careful analysis would involve modeling known sources of variation, 286 

such as geographic location and measurement differences as well as accounting for spatial 287 

distribution and correlation.   Since our primary interest is to evaluate the effect in the 288 

global average we do not pursue this approach further.   289 

 290 

Although trend analysis is a very crude way to look at global temperature change, it 291 

illustrates important features of the data.  The histograms show that the global warming is 292 

in some ways a subtle effect compared to the weather and instrumental noise that can 293 

affect individual stations.  The distribution of trends in the station data is so broad that 294 

many simultaneous measurement sites are necessary in order to properly characterize the 295 

effect; a handful is not enough.  With a full width at half max of about 5 oC per century, 296 

the trend histogram suggests that averaging one hundred independent stations would yield 297 

a 1σ trend uncertainty of about 5/√100 = 0.5 oC/century – just barely enough to resolve the 298 

collective temperature trend (compare to Jones who found a subset of 172 well dispersed 299 

stations gave a reasonable estimate of the global average [28]).  With over 30,000 stations, 300 

we do much better.  The trend analysis also supports the view that the spurious 301 
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contribution of urban heating to the global average, if present, is not a strong effect; this 302 

agrees with the conclusions in the literature that we cited previously.   303 

 304 

The positive and negative sloped stations are intermingled, even though some patterns 305 

related to underlying climate also occur.  This is seen in Figure 4, a map of the stations in 306 

the United States with at least a 70 year duration, with red + signs indicating stations that 307 

showed net warming over their record, and blue circles showing stations with net cooling.  308 

As with the world sample, the ratio of warming sites to cooling ones was in the ratio of 2:1. 309 

Some spatial homogeneity is present, but it is nonetheless possible to find long time series 310 

with both positive and negative trends from all portions of the United States.   311 

 312 

Figure 4.  Map of stations in and near the United States   313 

 314 

 315 
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4. Berkeley Earth Surface Temperature Global Average 316 

 317 

For a more rigorous estimate of the urban heat island effect, we performed a complete 318 

global land temperature record reconstruction using the Berkeley Earth Surface Temperature 319 

averaging methodology. [29] Briefly, this method includes the following steps.  Prior to 320 

averaging, station records are broken using metadata at times of changes in time of 321 

observation, station location, and at gaps in their records.  They are also broken at times they 322 

exhibit changes in the statistical properties of their record by comparing their record to other 323 

local stations.  In the averaging process stations are weighted according to their spatial 324 

correlation as well as their reliability.  Uncertainties on the average are calculated that 325 

incorporate both statistical uncertainty and uncertainty due to spatial incompleteness.   We 326 

evaluate the effect of very-rural station siting on the global average by applying the 327 

Berkeley Earth Surface Temperature averaging procedure to the very-rural stations.  By 328 

comparing the resulting average to that obtained by using all the stations we can quantify the 329 

impact of selecting sites not subject to urbanization on the estimated average land 330 

temperature.  331 

 332 

The approach of segregating stations in two categories and comparing the trends differs 333 

from the approach taken in Mckitrick where trends in socioeconomic factors are compared 334 

with trends in temperature.[20,21,23]. The univariate approach used here is justified by 335 

using a measure for urbanity that insures the very rural stations have undergone no change 336 

in socioeconic factors. Stations with no “built” pixels within .1 degrees essentially have 337 

never had any socioeconomic activity and so have no trend in that regard. The metric of 338 
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“built” is important because it is the human alteration of the surface that drives the UHI 339 

process.[5] 340 

 341 

 342 

In the full averaging procedure sites have their weights adjusted via an iterative procedure 343 

which compares their time series to the reconstructed Tavg; sites that deviate substantially 344 

from the local group behavior have their weights reduced for the next iteration . [29] Thus, 345 

the influence of sites with anomalous trends, such as urban heat island effects, should be 346 

reduced by the averaging procedure even when sites with spurious warming are part of the 347 

dataset being considered.  In Figure 5A we show the comparison of the temperature estimate 348 

for all the land sites (in red) with the temperature trend for the very rural land sites (blue).  349 

The difference between the two plots is shown in Figure 5B.  An urban heat island bias 350 

would be expected to show itself as an upward trend in 5B; none is seen. 351 

 352 

Figure 5.  A. Berkeley Earth global temperature averages, normalized to zero mean 353 

for 1950-1980.  B is the difference between the two curves in A.   354 

 355 

 356 
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Over the bulk of the record, the difference between the two calculations is consistent with 357 

zero within 2 standard errors (shown as the light grey area on Figure 5B, the standard errors 358 

are calculated by adding the statistical uncertainties calculated for each average, using the 359 

Jackknife method of Rohde in quadrature [29]).  At later times a slight downward trend is 360 

observed, but it is not statistically significant.  Over the period 1950 to 2010 (covering most 361 

of the data in Fig 3, and during which anthropogenic interference with climate is considered 362 

most acute) the temperature difference (Fig 5B) had a slope of -0.10 +- 0.24 °C/100yr (2σ 363 

error).  The error on the slope includes the statistical errors on the global land average at 364 

each time point. While the point estimate is in the opposite direction to urban heating the 365 

interval is consistent with zero urban heating and the heating effect estimated by the prior 366 

groups of +0.01 to +0.1°C per century.  Sensitivity to the definition of very-rural being 0.1 367 

degree distant from an urban area was assessed by repeating the analysis in this section 368 

using distances of 10km and 25km.  The resulting curves were very similar, for the period 369 

1950 to 2010 the difference between the two curves was  -0.11 +- 0.20 degrees C / century 370 

(2σ error) for very rural defined as at least 10km from an urban area (15,374 stations), and -371 

0.11 +- 0.22 degrees C / century (2σ error) for very rural defined as at least 25km from an 372 

urban area (9,670 stations). 373 

 374 

 375 

5. Discussion 376 

 377 

We observe the opposite of an urban heating effect over the period 1950 to 2010, with a 378 

slope of -0.10 +- 0.24 °C/100yr (2σ error) in the Berkeley Earth global land temperature 379 
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average.  The confidence interval is consistent with a zero urban heating effect, and at most 380 

a small urban heating effect (less than 0.14°C/100yr, with 95% confidence) on the scale of 381 

the observed warming (1.9 ± 0.1 °C/100yr since 1950 in the land average from figure 5A).   382 

 383 

The stations we identified as “very rural” provide good spatial coverage of the land surface 384 

of the globe and an average based solely on these stations provides a reconstruction robust 385 

to urban heating. Our results are in line with previous results on global averages despite 386 

differences in methodology.  Parker [30] concluded that the effect of urban heating on the 387 

global trends is  minor, HadCRU use a bias error of 0.05 °C per century, NOAA estimate 388 

residual urban heating of 0.06 °C per century for the USA and GISS applies a correction to 389 

their data of 0.01 oC per century.  All are small on the scale of global warming.  390 

 391 

The huge effects seen in prominent locations such as Tokyo have caused concern that the 392 

Tavg estimates might be unduly affected by the urban heat effect.  It did not have a strong 393 

effect on our estimate - which is not surprising given that urban areas are only 0.5% of the 394 

land area (according to the MOD500 map).  The station slope analysis shows that there are 395 

also a large number of sites with negative trend lines.  Some of these could be due to cooling 396 

effects resulting from anthropogenic changes to the landscape.  For example, in an urban 397 

area if an asphalt surface is replaced by concrete, we might expect the solar absorption to 398 

decrease, leading to a net cooling effect.  Rural areas could show temperature biases due to 399 

anthropogenic effects, for example, changes in irrigation.  400 

 401 
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We note that our averaging procedure uses only land temperature records. Inclusion of 402 

ocean temperatures will further decrease the influence of urban heating since it is not an 403 

ocean phenomenon.  Including ocean temperatures in the Berkeley Earth reconstruction is 404 

an area of future work. 405 

 406 
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8. Figure Captions 495 

 496 

Figure 1 Annual running mean of monthly temperatures at Tokyo compared to a global land 497 

average for 1900-2010. (Tokyo station id: wmo_47662).  498 

 499 

Figure 2 Locations of the 36,869  stations in the Berkeley Earth data set. (a) 15,594 stations 500 

classified as very-rural, at least 0.1° from an urban area in the MOD500 map (Schneider et 501 

al. 2009, 2010).  (b) Locations of the other 21,271 stations. 502 

 503 

Figure 3 Temperature trends.  A histogram of the trends is shown in (a) 504 

for all land stations in the Berkeley Earth data set of 36,869 records, and 505 

(b) only rural stations, defined as those that are at least 0.1 degrees in 506 

latitude and longitude from a MOD500 urban region.  The x-axis limits 507 

are chosen to include the central 80% of trends in (a).  508 

 509 

Figure 4.  Map of stations in and near the United States with at least 70 years of 510 

measurements; red “+” stations are those with positive trends and blue “o” stations are those 511 

with negative trends. 512 

 513 

Figure 5.  A. Berkeley Earth global temperature averages, normalized to zero mean for 514 

1950-1980.  The dashed (red) estimate is based on all sites; the solid (blue) estimate is based 515 

on the very rural sites (those more than 0.1 degrees distant from a MOD500 urban region).  516 

B is the difference between the two curves in A.  The thin line shows a one-year running 517 

average; the thicker line shows the 10-year running average.  The dark grey area shows the 518 
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standard error on the 10-year running average, the light grey twice the standard error on the 519 

10-year running average. The standard errors are calculated by adding the statistical 520 

uncertainties calculated for each average, using the Jackknife method of Rohde et al. (2012), 521 

in quadrature.   522 


